

Canada-United States-Ontario-Michigan Border Transportation Partnership

Detroit River International Crossing Environmental Assessment Study

Practical Alternatives Evaluation

Constructability Report for Access Road Alternatives

Draft

Preface

The Detroit River International Crossing (DRIC) Environmental Assessment Study is being conducted by a partnership of the federal, state and provincial governments in Canada and the United States in accordance with the requirements of the Canadian Environmental Assessment Act (CEAA), the Ontario Environmental Assessment Act (OEAA), and the U.S. National Environmental Policy Act (NEPA). In 2006, the Canadian and U.S. Study Teams completed an assessment of illustrative crossing, plaza and access road alternatives. This assessment is documented in two reports: Generation and Assessment of Illustrative Alternatives Report - Draft November 2006) (Canadian side) and Evaluation of Illustrative Alternatives Report (December 2006) (U.S. side). The results of this assessment led to the identification of an Area of Continued Analysis (ACA) as shown in Figure 1.

Within the ACA, practical alternatives were developed for the crossings, plazas and access routes alternatives. The evaluation of practical crossing, plaza and access road alternatives is based on the following seven factors:

- Changes to Air Quality
- Protection of Community and Neighbourhood Characteristics
- Consistency with Existing and Planned Land Use
- Protection of Cultural Resources
- Protection of the Natural Environment
- Improvements to Regional Mobility
- Cost and Constructability

This report pertains to the Constructability portion of the Cost and Constructability factor and is one of several reports that will be used in support of the evaluation of practical alternatives and the selection of the technically and environmentally preferred alternative. This report will form a part of the environmental assessment documentation for this study.

Additional documentation pertaining to the evaluation of practical alternatives is available for viewing/downloading at the study website (www.partnershipborderstudy.com).

Table of Contents

1.	Summary1						
2.	Backg	round	2				
2.1		Project Overview	2				
2.2	<u>)</u>	Project Limits	2				
2.3	8.	Project Schedule	2				
3.	Existir	ng Conditions	4				
3.1		Existing Land Use	4				
3.2	2	Soil Conditions and Groundwater	4				
3.3	3.	Municipal Drains	6				
3.4	ŀ.	Utilities	8				
4.	Praction	cal Alternatives	9				
4.1		Access Road Alternatives	9				
4.2	2	Plaza Alternatives	.10				
4.3	8.	International Bridge Alternatives	.10				
5.	Const	ruction Methods	.13				
5.1		At Grade Cross-Section (Alts. 1A and 2A)	.13				
5.2	<u>)</u>	Below Grade Cross-Section (Alts. 1B, 2B and Parkway)	.13				
5.3	8.	Cut and Cover Tunnels (Alt. 3)	.14				
6.	Factor	s Influencing Constructability	.16				
6.1		Existing Traffic	.16				
6.2	2.	Construction Staging	.16				
	6.2.1. 6.2.2	Practical Alternatives 1A and 1B (at-grade or below grade with one way service roads) Alternatives 2A and 2B (at-grade or below grade with parallel service road)	16				
	6.2.3.	Alternative 3 (tunnel)	17				
	6.2.4.	Parkway Alternative	17				
6.3	}. 631	Soils	.18				
	6.3.2.	Excavated Materials	18				
6.4	l.	Watercourse Crossings and Storm Water Management Plan	.19				
	6.4.1.	Grand Marais Drain / Turkey Creek	19				
	6.4.2.	Storm Water Management Plan	22				
6.5).	Utilities	23				
6.6	ò.	Construction Resources and Duration	.23				
7.	Evalua	ation of Alternatives	.26				

List of Figures

Figure 1 – Area of Continued Analysis - Practical Crossing, Plaza and Route Alternatives	3
Figure 2 – Profile of Soil Conditions Within ACA	5
Figure 3 – Municipal Drains	7
Figure 4 – Access Road Alternatives	.11
Figure 5 – Preliminary Analysis of Practical Access Road Alternatives	.27

List of Appendices

Appendix A – Existing Utilities

Appendix B – Typical Cross-Sections

Appendix C – Conceptual Construction Methods

Appendix D – Conceptual Construction Staging Cross-Sections and Plans

Appendix E – Concepts at Municipal Drain Crossings

Appendix F – Construction Duration and Resource Requirements

Summary

Overall, the construction staging and constructability reviews completed by the project team confirm that all the alternatives are constructible. Factors influencing constructability include traffic, poor soil conditions, municipal drains and utilities.

Construction staging for the new access road will include a requirement to maintain existing traffic on the Highway 3 and Huron Church Road corridors during construction. Four lanes of traffic will be maintained along Highway 3, and a minimum of four lanes of traffic will be maintained along Huron Church Road during construction. All access road alternatives can accommodate existing Highway 3 / Huron Church Road traffic during construction.

It is clear that access road construction will be complicated by the high water table and relatively poor ground conditions, particularly towards the north and west ends of the project. The construction of below grade sections should be feasible up to a depth of 10 m without undertaking additional measures to control soil. Below grade sections and cut and cover tunnels, which would require excavation to a depth of 15m below existing ground, would require complex construction techniques such as incorporating temporary ground improvement measures or other temporary wall and base stability enhancements during construction. The tunnel alternative is more complex and time consuming than other alternatives due to the necessity to build the tunnel box, ventilation, electrical communication systems and safety systems.

Complex construction staging will also be required to accommodate municipal drain crossings. Replacing the existing bridge over Grand Marais Drain/Turkey Creek with a concrete box culvert will allow for the construction of a below grade freeway cross-section passing over the drain. Construction of a tunnel cross-section under Grand Marais Drain/Turkey Creek would require complex construction techniques as described above. Inverted syphons for Cahill Drain and Lennon Drain crossings are considered to be feasible.

Utility crossings will need special consideration for below grade and tunnel alternatives. Existing utilities crossing the corridor could be incorporated into overpasses or could be provided in separate structures. Additional work would be required to bury utilities under the below grade or tunnel cross-sections.

Constructability issues for plaza and crossing Practical Alternatives are discussed in the *Practical Alternatives Evaluation Constructability Report for Plaza and Crossing Alternatives, May 2008.*

2.1.

Background

Project Overview

The Detroit River International Crossing (DRIC) Study is an Environmental Assessment Study undertaken by a joint partnership between the Ministry of Transportation Ontario (MTO), Transport Canada (TC), the Michigan Department of Transportation (MDOT) and the U.S. Federal Highway Administration (FHWA). This Report has been prepared to document constructability associated with implementing six practical highway access road alternatives and four practical plaza alternatives which were developed for this project in 2006. Documentation of the construction costs is provided in the *Preliminary Construction Cost Estimate Report for Practical Alternatives (Access Road and Inspection Plaza), May 2008.*

2.2. Project Limits

The project limits for this phase of the study are defined by the Area of Continued Analysis (ACA), which begins near the western terminus of Highway 401, and generally follows the alignments of Highway 3, Huron Church Road, E.C. Row Expressway. Approaching the Detroit River, the ACA includes area for four border plaza and three international bridge crossing alternatives. The ACA traverses through the Town of Tecumseh, Town of LaSalle and the City of Windsor. A key plan which identifies the ACA is presented in **Figure 1**.

2.3. Project Schedule

The partnership has an objective of completing the DRIC project by 2013. Given the importance of this corridor and the projected traffic, the completion of construction by 2013 is highly desirable. The complexity of construction of the access road, plaza and crossing will influence the assessment of risk to completing the project within the target timeframe.

Detroit River International Crossing Study

May 2008

Existing Conditions

The following sections outline those aspects of existing conditions which are relevant to constructability.

3.1. Existing Land Use

Land use along Highway 3 and Huron Church Road is generally a mixture of residential and commercial, with some institutional and open space. Commercial land use along Huron Church Road is Highway Commercial. Between Huron Church Road and Ojibway Parkway, there are some residential areas, but mostly open areas, most of which covered by low vegetation and trees. This area includes an Area of Natural and Scientific Interest (ANSI). Between Ojibway Parkway and the river is a mixture of industrial uses ranging from light to heavy industrial. More information on land use can be found in the technical report entitled *Draft Practical Alternatives Evaluation Assessment Report Existing and Planned Land Use, February* 2008.

3.2. Soil Conditions and Groundwater

As noted in the *Preliminary Foundation Investigation and Design Report Detroit River International Crossing Bridge Approach Corridor, October 2007* prepared by *Golder Associates Ltd.*, the existing soils within the ACA generally consist of soft silty clay. West of the Huron Church Road and E.C. Row Expressway interchange, the soil conditions become progressively softer, and less favourable for conventional construction methods. A majority of the bedrock is comprised of limestone, ranging in depths of 20 m (65 ft) below ground surface at the Detroit River, to 25 m (82 ft) at Ojibway Parkway and E.C. Row Expressway to 35 m (114 ft) at the existing terminus of Highway 401. The existing topography is flat, with a gradual decline in elevation towards the Detroit River. The profile of soil conditions between the Detroit River and the existing terminus of Highway 401 is presented in **Figure 2**.

Soil conditions become less conducive to construction with deeper excavation. The construction of below grade or tunnel facilities should be feasible up to a depth of 10m. Construction activities beyond this depth would require either temporary ground improvement measures or other temporary wall and base stability enhancements during construction. Cut depths greater than 10m will require further evaluation, and it is anticipated that additional stability enhancement measures may be required.

High groundwater conditions exist within the study limits, particularly near the Detroit River. Groundwater elevations range between 0.5 m to 6.0 m (1.6 to 19 ft) below the ground surface. Groundwater within the study limits contains dissolved hydrogen sulphide gas. The gas is released when groundwater is exposed to atmospheric pressure. Strategies for groundwater control will be required for all methods of construction.

For additional information regarding existing soil and groundwater conditions, please refer to the *Preliminary Foundation Investigation and Design Report Detroit River International Crossing Bridge Approach Corridor, October 2007* by Golder Associates Ltd.

Page 5

Detroit River International Crossing Study

3.3.

Municipal Drains

Within the Highway 3 / Huron Church Road section of the ACA, there are multiple municipal drain crossings. All of the drainage systems within the ACA are part of the Turkey Creek watershed, which outlet to the Detroit River. All of the drainage systems have been impacted by urbanization. A plan showing the locations of municipal drain crossings is shown in Figure 3. Major Municipal Drains which will affect constructability include the Grand Marais Drain/Turkey Creek, Cahill Drain, Lennon Drain and Wolfe Drain.

Grand Marais Drain/Turkey Creek

Grand Marais Drain/Turkey Creek is the most significant watercourse in the study area, as it drains a large section of southwest Windsor. Grand Marais Drain/Turkey Creek has been significantly altered as a result of urbanization. Grand Marais Drain/Turkey Creek under the Huron Church Road Bridge has a trapezoidal concrete lined open channel with widths of 10 m at the bottom and 25 m at the top of the channel. The clearance to the bottom of the low flow channel under the Huron Church Road bridge is 6 m. There is a pedestrian pathway / bikeway located to the north side of the low flow channel. The pathway / bikeway is closed during storm events due to flooding. Warm water sport fish have been confirmed in this creek.

Cahill Drain

The Cahill Drain is the second largest drainage system that crosses the ACA. The Cahill drain and one tributary crosses the ACA south of Cabana Road, and outlets to the Grand Marais Drain / Turkey Creek. The Cahill Drain supports warmwater sport fish communities.

Lennon Drain

The Lennon Drain is a trapezoidal open channel which is located south of Cabana Road, and outlets into the Cahill Drain. The Lennon Drain supports warmwater sport fish communities.

Wolfe Drain

The Wolfe Drain runs parallel to Highway 3 on the east side of Highway 3 between Highway 401 and Cousineau Road. The Wolfe Drain is a trapezoidal open channel, with multiple bridges constructed over the drain to accommodate driveways to residential homes on the east side of Highway 3. The Wolfe Drain outlets to Cahill Drain and ultimately to Grand Marais Drain / Turkey Creek. The Wolfe Drain supports warmwater sport fish communities.

Other Municipal Drains

Other Municipal Drains within the ACA which are not expected to materially affect constructability but still receive runoff from the proposed freeway corridor include Titicombe Drain, Basin Drain, Marentette Mangin Drain, and McKee Drain.

For additional information regarding municipal drains within the ACA, please refer to *Draft Stormwater Management Plan, March 2008* by *URS Canada*.

3.4. Utilities

There are numerous utilities located within the ACA. These include communications (Bell Canada and MaXess Networks), gas (Union Gas), hydro (Hydro One, Essex Power and EnWin) and Municipal (Storm Sewer, Sanitary Sewer, Watermain). Communications and hydro are predominantly overhead with some underground sections.

Major utilities crossing the Highway 3/Huron Church Road Corridor include:

- 600 mm watermain (100 m north of Howard Avenue);
- 250 mm watermain & 375 mm sanitary (300 m north of Cabana Road/Todd Lane);
- 375 mm sanitary (north side of Pulford Street);
- 300 mm sanitary (at Norfolk Street);
- 300 mm watermain, intermediate pressure pipe (natural gas), 300 mm and 225 mm sanitary (at Grand Marais Road West);
- 1050 mm storm sewer & 200 mm watermain (at Labelle Street); and
- 200 mm watermain (225 m north of Labelle Street).

A detailed listing of utilities within the Highway 3/Huron Church Road corridor is presented in **Appendix A**.

Practical Alternatives

Six access road alternatives including a freeway extension of Highway 401 to a new plaza and international bridge have been carried forward for evaluation. All alternatives follow the existing Highway 3 and Huron Church Road corridor, and run parallel (south) of E.C. Row Expressway to the plaza locations. Four plaza locations and three international bridge locations were also evaluated. The location of the connecting route alternatives, plazas and international bridge crossing is shown on the key map in **Figure 1**.

4.1. Access Road Alternatives

The proposed typical section for the Highway 401 extension is a six-lane freeway (3 lanes at 3.75m width in each direction), with a 6.8 m median. The median will include a tall wall concrete median barrier with 3.0 m shoulders. The outside shoulders will also be 3.0 m. Interchanges will be provided at Highway 3 and Huron Church Road (south of EC Row) for all alternatives. Depending on which access road alternative is selected, additional access will be provided at either St. Clair College or Todd Lane/Cabana Road. Access road alternatives which connect to either Plaza B or C will include an interchange at Ojibway Parkway. Plaza A cannot accommodate an interchange at Ojibway Parkway. Alternatives considered for the freeway include at-grade freeway, a below grade freeway and a tunnel.

Two configurations for service roads paralleling the new freeway are proposed. One configuration includes a one-way service road system on each side of the freeway. Each one-way service road includes two lanes at 3.5 m, a left shoulder width of 2.5 m and a right shoulder width of 3.0 m. Another configuration includes a four-lane service road (two lanes in each direction) from Howard to south of the E.C. Row Expressway. Under this configuration, the freeway will be constructed along side existing Highway 3 and Huron Church Road, leaving them virtually unchanged.

Access road geometrics were developed based on MTO design guidelines and consultation with design specialists, agencies and stakeholders. The following is a summary of the 6 access road alternatives:

Alternative 1A includes an at-grade freeway with below grade sections and one-way service roads on each side of the freeway. Interchanges are proposed at Highway 3, St. Clair College and Huron Church Road.

Alternative 1B includes a below grade freeway with one-way service roads on each side of the freeway. Interchanges are proposed at Highway 3, St. Clair College, and Huron Church Road.

Alternative 2A includes an at-grade freeway with below grade sections which is predominantly aligned west of the existing Highway 3 and Huron Church Road. This section of Highway 3 and Huron Church Road would function as a service road to the freeway. Interchanges are proposed at Highway 3, Howard Avenue, Todd Lane/Cabana and Huron Church Road.

Alternative 2B includes a below grade freeway which is predominantly aligned west of the existing Highway 3 and Huron Church Road. This section of Highway 3 and Huron Church Road would function as a service road to the freeway. Interchanges are proposed at Highway 3, Howard Avenue, Todd Lane/Cabana and Huron Church Road.

Alternative 3 is a cut and cover tunnelled freeway with service roads (Highway 3 and Huron Church) constructed on top of the tunnel box. Interchanges are proposed at Highway 3, St. Clair College and Huron Church Road.

The Parkway includes a below-grade freeway with 1.86 km of short tunnels. The freeway is predominantly aligned south of the existing Highway 3 and Huron Church Road. Existing Highway 3 and Huron Church Road would function as a service road to the freeway. Interchange ramps are proposed at Highway 3, Howard Avenue, St. Clair College, Todd Lane/Cabana Road and Huron Church Road.

Conceptual renderings of the Access Road Alternatives are presented in **Figure 4**. Typical Engineering cross-sections for each alternative are presented in **Appendix B**.

At-grade freeway Alternatives 1A and 2A include localized cross-sections which are below grade. The below grade cross-sections are primarily located at major crossing roads such as Howard Avenue, Cousineau Road/Sandwich Parkway, Cabana Road/Todd Lane and Spring Garden Road. These locations include the section between North Talbot Road to south of Howard Avenue, and from Spring Garden Road westerly to the international crossing. In addition, Alternative 3 (tunnel) includes localized below grade cross-sections which function as a transition between the at-grade and tunnel cross-sections.

4.2. Plaza Alternatives

Four locations for a new inspection plaza have been developed. Plaza A is located south of EC Row Expressway, east of Ojibway Parkway. Plazas B and B1 are located in the Brighton Beach Industrial Park between Broadway Street and McKee Street. Plaza C is located adjacent to the Detroit River, west of Sandwich Street and South of Prospect Avenue. All plaza locations are approximately 30-40 hectares (80 acres) in size, and have been designed to accommodate need to 2035 and beyond.

4.3. International Bridge Alternatives

Three locations for an international bridge crossing have also been developed. Bridge types investigated include Suspension and Cable Stay. Span arrangements which include piers in and out of the Detroit River have been considered. Details are documented in the *Detroit River International Crossing Bridge Type Study Report, July 2007* and *Detroit River International Crossing Bridge Conceptual Engineering Report, February 2008*, both prepared by URS and Parsons.

Construction Methods

Additional property over and above what currently exists in the Highway 3/Huron Church Road Corridor will be required to accommodate construction of the Practical Access Road alternatives. Existing road allowances along Huron Church Road and Highway 3 range from 36 m to 55 m. The total road allowance required to construct the practical alternatives ranges from 80 m for a tunnel, to 90 m to 100 m for at grade or below grade alternatives.

The first phase of construction would focus on the relocation of utilities. There are numerous utilities located within the corridor, including Hydro, Bell, Union Gas and municipal utilities such as watermains, storm sewers and sanitary sewers. The next sequence of construction staging is dependent on which access road alternative is selected.

The Partnership is currently considering alternative methods of contracting to implement the new facility. These will range from conventional tendering through many variations that result in design-build construction.

5.1. At Grade Cross-Section (Alts. 1A and 2A)

At grade freeways will be constructed using conventional staging techniques implemented throughout the province. Following utility relocation, the next construction phase would focus on the construction of overpasses and underpasses, relocation of the existing roadway lanes as necessary, and any temporary staging. The final phase of construction would focus on completing the freeway itself.

The method of construction for Alternatives 1A and 2A is illustrated in Appendix C.

5.2. Below Grade Cross-Section (Alts. 1B, 2B and Parkway)

The first sequence of below grade construction would focus on the construction of overpasses and underpasses, relocation of the existing roadway lanes as necessary, and any temporary staging. The following phase of construction would focus on completing the retaining walls and excavation for the below grade freeway.

There are three basic methods of constructing the below grade alternative:

Conventional (2:1 slopes). This alternative requires extensive excavation and backfill, and is not recommended where it would result in severe property impacts. This alternative will be considered in localized areas where vacant or surplus property is available and only if soil conditions permit.

Caisson Walls. This alternative utilizes drilling (auger) rigs to install caissons, which will form part of the retaining walls for the below grade cross-section. This alternative has

reduced property requirements relative to the Conventional Method.

Diaphragm Wall. This method utilizes a trench cutter for installation of concrete walls using bentonite slurry to stabilize trench. This method can achieve higher production rates than caisson wall system, and also has reduced property requirements relative to the Conventional Method.

In the case of The Parkway, standard bridge construction methods will be used to construct the 11 short tunnel sections which range in length from 120 m to 240 m (total combined length of 1.86 km).

Once excavation has been completed and all required retaining walls are in place, the freeway itself will be constructed.

The method of construction for Alternatives 1B, 2B and Parkway using a Diaphram Wall is illustrated in **Appendix C**.

5.3.

Cut and Cover Tunnels (Alt. 3)

Cut and cover tunnels are constructed using excavation techniques and can include the initial construction of the side walls to minimize the overall width of the excavation. Although there is a high water table and generally poor soils, an assessment by the study team's geotechnical specialists has concluded that cut and cover tunnelling is a feasible construction method. Several cut and cover methods of construction are likely to be employed at various locations along the alignment. These include:

Conventional (2:1 slopes). This alternative requires extensive excavation and backfill, and is not generally being considered where it would result in severe property impacts. This alternative will be considered in areas where property is available.

Caisson Walls. This alternative utilizes drilling (auger) rigs to install caissons, which will form part of the tunnel walls. This alternative is typically constructed by the 'Bottom-Up' Method. Once the caissons are in place, the soil between the walls is excavated to a depth below the tunnel floor. The tunnel floor slab is poured, followed by the side walls of the tunnel, which are constructed from the 'bottom-up'. Once the tunnel walls have been completed, the roof of the tunnel is constructed, and the surface roadway on top of the tunnel is completed.

This method of construction has reduced property requirements relative to the Conventional Method. Caisson wall construction has been used as the primary method for similar projects in Ontario. It is noted that vibrations generated by the installation of caissons would need to be addressed, as there are numerous houses and businesses located in close proximity to the proposed construction zone.

Diaphragm Walls. This method utilizes a trench cutter for installation of concrete walls using bentonite slurry to stabilize the trench. Once the diaphragm walls are in place, the soil between the walls is excavated to a depth below the tunnel floor. The tunnel floor slab is poured. Once the tunnel walls have been completed, the roof of the tunnel is constructed, and the surface roadway on top of the tunnel is completed.

This method can achieve higher production rates than the caisson wall system, and also has reduced property requirements relative to the Conventional Method. The use of bentonite slurry is an environmental concern which would need to be addressed.

The method of construction for Alternative 3 using a Diaphram Wall is illustrated in Appendix C.

Mechanical ventilation of a long tunnel, such as the one being considered in Alternative 3, is required to control air quality and visibility in the tunnel and at the portals. A mechanical ventilation system consisting of air flow ducts in the tunnel and one or more ventilation buildings with fans to force air in/out of the tunnel would be required. These ventilation systems would also be designed to control the direction of air flow and smoke in the case of an emergency. It is estimated that the ventilation building(s) would be about 18 m (59 ft) high (i.e. 4-5 storeys) plus the height of the stack. The total height including the stack could be up to 45 m (147 ft).

In addition to ventilation systems and buildings, numerous other safety features will need to be incorporated into the design of a long tunnel (Alternative 3). Some of the features unique to the tunnel design include emergency access between tunnels, emergency access and egress between the tunnel and the surface, ice prevention at portals and ramps, emergency telephone systems, containment of spills, flood prevention system, smoke detector, carbon monoxide and dioxide monitoring system, fire suppression systems, emergency power supply and storage for emergency supplies.

The cut and cover tunnel can be constructed in stages so that traffic can be maintained within the corridor throughout construction. Traffic staging is illustrated in Conceptual Construction Methods, **Appendix C**. Base stability conditions may require special construction techniques at deeper excavation depths, where the soils are poorest. Some surface settlement is anticipated adjacent to the excavation. The amount of settlement is dependent on both the total depth of excavation, and on the construction method used. Mitigation measures could be considered to reduce the risk of settlement during construction.

Integration of these systems will add to the time required to complete and/or increase effort/risks to complete the cut and cover tunnel alternative in the targeted timeframe.

61

Factors Influencing Constructability

Existing Traffic

Highway 3 / Huron Church Road provides primary access of local and international passenger and commercial traffic to and from the terminus of Highway 401 to the Ambassador Bridge. The Highway 3 / Huron Church Road corridor also provides movements for local and regional traffic through the City of Windsor and the Town of LaSalle. Construction staging for the new access road will include a requirement to maintain existing traffic on the Highway 3 and Huron Church Road corridors during construction. Four lanes of traffic will be maintained along Highway 3, and a minimum of four lanes of traffic will be maintained along Huron Church Road during construction. Access to and from all major crossing roads, commercial and residential entrances will be maintained during construction as required. Construction staging will need to be implemented to ensure safe and efficient construction operations as well as to minimize community impacts during construction.

For each Practical Alternative, the access road is comprised of a freeway section (the Highway 401 extension) and the future service roads (Highway 3 / Huron Church Road) and interchange ramps between the freeway and service road. The following sections present a typical sequence of construction for this type of infrastructure project. Detailed staging plans will be fully developed as part of the final design of the project.

A set of conceptual construction staging cross-sections for Alternatives 1A, 1B and 3 is presented in **Appendix D**. The construction staging sequence for Alternatives 2A and 2B is similar to that for Alternatives 1A and 1B. Conceptual staging for the Parkway is presented as a series of plans in **Appendix D** to better depict staging of the various Parkway configurations shown in **Figure 4**.

6.2. Construction Staging

6.2.1.

Practical Alternatives 1A and 1B (at-grade or below grade with one way service roads)

The first phase of construction will focus on the relocation of utilities and other municipal services. There are numerous utilities located within the corridor, including Hydro, Bell, Union Gas, cable television as well as municipal services such as watermains, storm sewers, municipal drains and sanitary sewers.

The next construction phase would focus on building the future service roads, the realignment of the existing municipal roadways (where necessary), construction of bridges and the construction of any temporary staging roads. During this phase, traffic will remain primarily on the existing Highway 3 / Huron Church Road with some routing onto localized temporary staging roads within the corridor.

The final phases of construction would focus on completing the new freeway itself. Atgrade sections can be constructed using conventional freeway construction methods typically used on 400-series highways throughout the province. Below grade sections will be constructed by using excavation techniques suitable for urban areas. A variety of methods can be employed to minimize the overall property requirements of the project. During the final phases, traffic will be relocated onto the newly constructed service roads with some routing onto localized temporary staging roads within the corridor.

6.2.2. Alternatives 2A and 2B (at-grade or below grade with parallel service road)

The construction staging sequence and methods for these Practical Alternatives are similar to those for practical alternatives 1A and 1B. However, the alignment for Practical Alternatives 2A and 2B is, for the most part, beside the existing roadway so there will be less utility relocation and realignment of roadways required to construct these alternatives. During construction, traffic will remain primarily on the existing Highway 3 / Huron Church Road with some routing onto localized temporary staging roads within the corridor.

6.2.3. Alternative 3 (tunnel)

The first phase of construction will focus on the relocation of utilities and other municipal services. There are numerous utilities located within the corridor, including hydro, Bell, Union Gas, cable television as well as municipal services such as watermains, storm sewers, municipal drains and sanitary sewers.

The tunnel box itself would be constructed in two stages. In each stage, the first sequence of tunnel construction would focus on the realignment of the existing roadways (such as Highway 3/Huron Church Road) and temporary staging roads. During this phase traffic will remain primarily on the existing Highway 3/ Huron Church Road with some routing onto localized temporary staging roads within the corridor. The next phase of construction would focus on the construction of the tunnel structure itself using the cut and cover tunnel method. During this phase, traffic will be routed primarily onto temporary staging roads.

Once construction of the tunnel structure is in place, remaining features such as ventilation systems, pumping stations, power systems will be constructed, and the surface road network will be completed.

6.2.4. Parkway Alternative

The first phase of construction will focus on the relocation of utilities and other municipal services. There are numerous utilities located within the corridor, including hydro, Bell, Union Gas, cable television as well as municipal services such as watermains, storm sewers, municipal drains and sanitary sewers.

The next construction phase would focus on building the future service roads, the realignment of the existing municipal roadways (where necessary), and the construction of any temporary staging roads. During this phase, traffic will remain primarily on the existing Highway 3 / Huron Church Road with some routing onto localized temporary staging roads within the corridor.

The second construction phase involves shifting local traffic to the future service road and temporary staging road to allow for the excavation of the depressed freeway and construction of associated retaining walls and bridges including short tunnel sections.

During the final phases, traffic will be relocated onto the newly constructed service roads. The final phases of construction would focus on completing the new freeway itself.

6.3. Soils

631

Soil Conditions

The construction of below grade cross-sections and cut and cover tunnels should be feasible up to a depth of 10m without undertaking additional measures to stabilize the excavation. It is noted that the construction of a tunnel section below existing Grand Marais Drain/Turkey Creek would require an excavation depth of approximately 15m below existing ground. This would require either temporary ground improvement measures or other temporary wall and base stability enhancements during construction. Additional stability enhancement measures may be required in this area. For additional information regarding soil conditions, refer to Foundation Investigation and Design Report Detroit River International Crossing Bridge Approach Corridor, October 2007 by Golder Associates Ltd.

632 **Excavated Materials**

Although earth-balance will be assessed more thoroughly during subsequent design stages of the study, it is anticipated that much of the excavated material from below-grade Practical Alternatives could be utilized as fill for above-grade sections of the Access Road Alternatives adjacent to the E.C. Row Expressway corridor as well as for the plaza, Detroit River Crossing approaches, service road, noise/flood protection berms and the extensive multi-use trail system. It is likely that some excess excavated material will remain and require disposal, as appropriate, according to regulatory guidelines.

A strategy for management/disposal of excess material should be developed during subsequent design stages when earth-balance is guantified. Further details regarding the re-use of excavated soil materials are available in the Preliminary Foundation Investigation and Design Report Detroit River International Crossing Bridge Approach Corridor, October 2007 by Golder Associates Ltd.

6.4. Watercourse Crossings and Storm Water Management Plan

6.4.1. Grand Marais Drain / Turkey Creek

At-grade access road Alternatives 1A and 2A would require the construction of new bridges over Grand Marais Drain / Turkey Creek. Sketches illustrating the new bridges are presented in **Sketch 1** and **Sketch 3** in **Appendix E**. Below grade Alternatives 1B and 2B could be constructed by either creating a short tunnel section under Grand Marais Drain / Turkey Creek, or by lowering the freeway 2 to 3 m below existing grades over Grand Marais Drain / Turkey Creek.

Tunnel Under Grand Marais Drain / Turkey Creek

Alternative 1B

The short tunnel section under Grand Marais Drain / Turkey Creek in Alternative 1B can be constructed by lowering the profile so that the tunnel is constructed under the existing creek using the cut and cover method. A sketch illustrating the tunnel concept under Grand Marais Drain / Turkey Creek is presented as **Sketch 2** in **Appendix E**.

The tunnel cross-section could be constructed under the following stages:

Stage 1 – Construct a temporary 6-lane detour bridge across Grand Marais Drain / Turkey Creek on the north side. Divert Huron Church Road to cross Grand Marais Drain / Turkey Creek over the temporary bridge. Remove the existing Huron Church Road bridge over Grand Marais Drain / Turkey Creek.

Stage 2 - Close the east half of the Grand Marais Drain / Turkey Creek channel by constructing a temporary bulkhead at the location of the proposed tunnel, and divert the flow of water through the west half of the Grand Marais Drain / Turkey Creek channel.

Stage 3 - Construct the eastern section of the tunnel box section by cut and cover method and temporary supports of excavations.

Stage 4 – Construct the Grand Marais Drain / Turkey Creek channel for the east half width and divert flow of the water through the east half width of the channel. Close the west half of the width of the Grand Marais Drain / Turkey Creek channel by temporary bulkhead at the location of the proposed freeway tunnel.

Stage 5 - Construct the western section of the tunnel box section by cut and cover method and temporary supports.

Stage 6 - Construct the west half of the Grand Marais Drain / Turkey Creek channel. Remove the temporary bulkhead and connect the eastern and western portions of the tunnel at the temporary bulkhead. Divert the flow of water through the full width of the Grand Marais Drain / Turkey Creek channel. **Stage 7** - Construct the new westbound and eastbound Huron Church Road bridge over Grand Marais Drain / Turkey Creek on the north and south sides respectively of the completed tunnel. Remove the temporary detour bridge over Grand Marais Drain / Turkey Creek.

Alternative 2B

The short tunnel section in Alternative 2B can be constructed in a similar sequence as identified above for Alternative 1B. The existing Huron Church bridge over Grand Marais Drain / Turkey Creek will be maintained during and after construction. No new bridges over Grand Marais Drain / Turkey Creek are required as part of Alternative 2B. The tunnel cross-section could be constructed following Stages 2 to 6 as presented under Alternative 3. A sketch illustrating the tunnel concept under Grand Marais Drain / Turkey Creek is presented as **Sketch 4** in **Appendix E**.

Alternative 3

The short tunnel section under Grand Marais Drain / Turkey Creek in Alternative 3 can be constructed in a similar sequence as identified above for Alternative 1B. Alternative 3 will require the construction of a temporary 6-lane detour bridge across Grand Marais Drain / Turkey Creek on the north side. Concrete caisson foundations to support the abutments of the new service roads over Grand Marais Drain / Turkey Creek will be staged with construction of the tunnel. A sketch illustrating the tunnel concept under Grand Marais Drain / Turkey Creek is presented as **Sketch 6** in **Appendix E**.

The tunnel cross-section could be constructed under the following stages:

Stage 1 – Construct a temporary 6-lane detour bridge across Grand Marais Drain / Turkey Creek on the north side. Divert Huron Church Road to cross Grand Marais Drain / Turkey Creek over the temporary bridge. Remove the existing Huron Church Road bridge over Grand Marais Drain / Turkey Creek.

Stage 2 – Close the east half of the Grand Marais Drain / Turkey Creek channel by constructing a temporary bulkhead at the location of the proposed tunnel, and divert the flow of water through the west half of the Grand Marais Drain / Turkey Creek channel. Construct concrete caisson foundations to support the east abutments of the new westbound and eastbound service roads over Grand Marais Drain / Turkey Creek.

Stage 3 – Construct the eastern section of the tunnel box section by cut and cover method and temporary supports of excavations.

Stage 4 – Construct the Grand Marais Drain / Turkey Creek channel for the east half width and divert flow of the water through the east half width of the channel. Close the west half of the width of the Grand Marais Drain / Turkey Creek channel by temporary bulkhead at the location of the proposed freeway tunnel. Construct concrete caisson foundations to support the west abutments of the new westbound and eastbound service roads over Grand Marais Drain / Turkey Creek.

Stage 5 – Construct the western section of the tunnel box section by cut and cover method and temporary supports.

Stage 6 – Construct the west half of the Grand Marais Drain / Turkey Creek channel. Remove the temporary bulkhead and connect the eastern and western portions of the tunnel at the temporary bulkhead. Divert the flow of water through the full width of the Grand Marais Drain / Turkey Creek channel.

Stage 7 – Construct the new superstructure and the abutments of the westbound and eastbound Service Road bridges over Grand Marais Drain / Turkey Creek. Remove the temporary detour bridge over Grand Marais Drain / Turkey Creek.

Below Grade Freeway Over Grand Marais Drain / Turkey Creek

Parkway Alternative

Transport Canada has indicated that the Grand Marais Drain/Turkey Creek is classified as "not navigable". Therefore, construction of a below grade freeway over Grand Marais Drain / Turkey Creek for the Parkway Alternative can be achieved by replacing the existing bridge with a triple cell concrete culvert. Each cell would be 10 m in width, 2 m in height. This will permit a lowering of the freeway by approximately 2-3 m relative to the adjacent existing ground level. The triple cell concrete culvert can also be incorporated into Alternatives 1B and 2B. A sketch illustrating this concept is presented as **Sketch 5** in **Appendix E**.

The below grade freeway cross-section over Grand Marais Drain/Turkey Creek could be constructed under the following stages:

Stage 1 - Close the east half of the Grand Marais Drain / Turkey Creek channel by constructing a temporary bulkhead and divert the flow of water through the west half of the Grand Marais Drain / Turkey Creek channel.

Stage 2 - Construct base and walls of the eastern section of the Grand Marais Drain / Turkey Creek three cell box culvert.

Stage 3 – Divert the flow of water through the completed eastern section of the box culvert, and close the west half of the Grand Marais / Turkey Creek box culvert channel by temporary bulkhead. Construct the base and walls of the west half of the box culvert. Construct the top slab of the western most cell.

Stage 4 – Remove the temporary bulkhead and divert the flow of water through the east and west cells, and construct the top slab of the centre cell.

Stage 5 – Divert the flow of water through the west and centre cells, and construct the top slab of the east cell.

Stage 6 – Construct the freeway over the completed three cells.

Hydraulic Considerations During Construction

For both tunnel and culvert alternatives, a low flow channel for Grand Marais Drain / Turkey Creek will be provided during each stage of construction. For the tunnel alternative, the existing sideslope of Grand Marais Drain / Turkey Creek will be steepened to maximize capacity of the Creek. Additional hydraulic analysis will be undertaken to confirm if the resulting cross-sections during construction can accommodate the required design year storm event. A risk analysis will be undertaken if the required storm event cannot be provided during all stages of construction.

6.4.2. Municipal Drains

Cahill Drain, Lennon Drain

Construction of a below grade freeway over the Cahill Drain or Lennon Drain can be achieved by replacing the existing culverts by an inverted syphon. The inverted syphon would be 25 m in width, and approximately 2 m in height. The inverted syphon would permit a lowering of the freeway by approximately 2-3 m. A sketch illustrating a siphon concept is presented in **Appendix E**.

Constraints encountered in the design of solutions to accommodate an inverted syphon or culvert include the ability to accommodate fisheries.

Wolfe Drain

Alternatives for the Wolfe Drain are dependent on which connecting route cross-section and alignment is selected. Alternatives include maintaining the existing drain crosssection and alignment, or relocating the drain as an open channel.

All municipal drain drainage concepts identified above are feasible. Additional consultation with Agencies will be required to determine impacts to fisheries and associated compensation requirements. Additional analysis will be required to confirm sizes of realigned and/or combined drains, culverts and syphons. Additional hydraulic analysis will be required to confirm flow velocities resulting from the proposed drainage systems, and sedimentation (particularly with syphon alternative).

6.4.3. Storm Water Management Plan

The proposed stormwater management strategy developed for Alternatives 1A, 1B, 2A, 2B, 3 and Parkway consists of utilizing oil/grit separators and stormwater management facilities consisting of wet ponds to provide quality and quantity control. Due to the terrain and the use of below grade cross-sections, pumping stations will be required to raise storm water from below-grade sections to be treated at surface-level before being discharged to the existing municipal drains/watercourses.

During construction of below-grade sections, special consideration must be given to the installation of temporary pumps to remove water from the depressed work zones prior to construction of the permanent drainage system.

For additional information regarding watercourse crossings and stormwater management, please consult the *Draft Practical Alternatives Evaluation Assessment Report Stormwater Management Plan, March 2008* by URS Canada.

6.5. Utilities

As identified in Section 2.4, there are 5 watermain, 5 sanitary, 1 storm sewer and 1 gas crossing the Highway 3/Huron Church Road corridor within the ACA. Utility crossings will need special consideration for below grade and tunnel alternatives. During construction, temporary supports for utilities may be required. For below grade cross-sections, utilities crossing the corridor could be strapped to overpasses, or could be provided in separate structures. It is noted that MTO policy does not allow utilities such as sanitary sewer, water mains and gas mains to be strapped to structures. If these types of solutions are not considered acceptable for any given utility crossing, additional work would be required to bury utilities under the below grade or tunnel cross-sections. Therefore, the degree of utility impacts is more for Alternatives 1B, 2B, 3 and Parkway.

For Alternatives 2A and 2B, most of the existing utilities which run parallel to Highway 3 / Huron Church Road can be retained since most of the existing road will be maintained in the current location. This will result in a slightly lower degree of utility impacts for Alternatives 2A and 2B.

6.6.

Construction Resources and Duration

The mandate of this project is to have the entire facility constructed and operational by the end of 2013. Each practical alternative will require a different level of complexity and effort to construct within the targeted timeframe. The below grade and tunnel alternatives require significantly more complex construction than the at-grade alternatives. These alternatives, particularly the tunnel, will require a more intense construction period than the at-grade alternatives. The overall schedule will depend on equipment, labour and materials availability, and further details of staging which will be determined in later phases of design. Municipal noise by-law exemptions may be sought to facilitate more rapid construction.

For comparison purposes, URS has completed a preliminary 'order of magnitude' estimate of resource requirements for constructing a 6 km section of the access road alternatives from south of Howard Avenue to east of Malden Road. The overall construction schedules assume time for all civil works including roads, bridges, retaining walls and tunnels, as well as mechanical and electrical systems, and testing and commissioning. The timeline for utility relocation is <u>not</u> included in the construction duration. Utility relocation will require approximately **1 year** to complete in addition to the timelines specified below.

May 2008

At Grade Cross-section

The at-grade cross-section (Alternatives 1A and 2A) can be constructed in approximately **3 years**. A typical 10-hour day shift during peak production periods would include the following resources:

- 14 Drill rigs;
- 16 Excavator CAT320 (front end loader/dozers);
- 20 Cranes (50 ton); and
- 60 Tri-axle trucks (20 Ton), 600 truck trips per day.

Below grade Cross-Section

The below grade cross-section (Alternatives 1B and 2B) would require **3.5 years** of construction. The method of construction assumed in our estimate is a Caisson Wall System (bottom-up construction). A typical 10-hour day shift during peak production periods would require the following resources:

- 36 Caisson drilling rigs (30 rigs for mainline, 6 for ramps);
- 10 Excavator CAT320 (front end loader/dozers);
- 10 Cranes (50 ton); and
- 50 Tri-axle trucks (20 Ton), 500 truck trips per day.

Tunnel Cross-Section

The tunnel cross-section (Alternative 3) would require between **4 and 4.7 years** of construction, depending on the construction method used. The construction timeline includes time to test and implement mechanical, ventilation and communications systems. Two estimates were completed, one assuming a Caisson Wall System and the other, a Diaphragm Wall System. A typical 10-hour day shift during peak production periods using a Caisson Wall System would require the following resources:

- 51 caisson drilling rigs (45 rigs for mainline, 6 for ramps);
- 30 Excavator CAT320 (front end loader/dozers);
- 15 Cranes (50 ton); and
- 120 Tri-axle trucks (20 Ton), 1200 truck trips per day.

A typical 10-hour day shift during peak production periods using a Diaphragm Wall System would require the following resources:

- 10 Trench Cutter Rigs (6 rigs for mainline, 4 for ramps);
- 25 Excavator CAT320 (front end loader/dozers);
- 15 Cranes (50 ton); and
- 110 Tri-axle trucks (20 Ton), 1100 truck trips per day.

Additional details regarding construction timelines and resources for at-grade, below grade and tunnel alternatives are presented in **Appendix F.**

Construction resources and duration required to construct the Parkway Alternative would be similar to constructing the below grade section. Although the Parkway alternative has reduced retaining wall requirements relative to the below grade alternative, there will be additional resources and duration required to construct 1.86 km of short tunnel sections. The construction duration for the Parkway Alternative would be approximately 4.0 years.

Construction of the plaza (1.5 years) and international bridge (3.5 to 4.5 years) would be completed in parallel to the access road to meet the 2013 completion target.

We note that construction timelines are highly dependent on availability of resources (man power, equipment and materials). Higher construction complexity and resource requirements for constructing the tunnel results in a high risk that the tunnel will not be completed within the 2013 timeframe. Moderate to high resource requirements for at grade and below grade alternatives result in a moderate to high risk that the non-tunnel alternatives can be completed within the 2013 time frame.

Evaluation of Alternatives

Cost and Constructability is one of seven factors used to evaluate the practical access road alternatives. A summary of the assessment of constructability is presented in **Figure 5.** The construction costs included in this table were obtained from the *Preliminary Construction Cost Estimate Report for Practical Alternatives (Access Road and Inspection Plaza), May 2008* prepared by *URS Canada.*

Construction staging and constructability reviews completed by the project team confirm that all alternatives are constructible. All alternatives can be constructed while maintaining 4-6 lanes for existing traffic within the corridor. Access to and from all major crossing roads and entrances can be maintained during construction. All alternatives will require a similar degree of utility relocation (approx. 1 year duration) prior to construction.

Soil conditions are not conducive to deep excavations. Complex staging including stability enhancement measures may be required during construction of excavations (for tunnel and below grade sections), particularly where excavations are deeper than 10 m, such as would be required for constructing a tunnel under Grand Marais Drain / Turkey Creek.

Construction of tunnels would require significantly more materials for both civil components including concrete and aggregates. For long tunnels such as proposed in Alternative 3, this includes safety support systems such as ventilation, lighting, CCTV and traffic control centre. The additional materials would require significantly more resources (construction equipment, movement of materials and manpower). This, in turn, will require a longer duration to construct (4 to 4.7 years for Alternative 3).

Extensive retaining wall systems are required for at grade and below grade alternatives, including the Parkway, with a maximum of 12 km of retaining walls required for the below grade alternatives. This results in moderate to high resource requirements for these alternatives.

The below-grade and tunnel alternatives pose the greatest risk to projected cost and schedule (with the tunnel posing the greatest risk) as they require significantly more complex construction than at-grade alternatives. These alternatives, particularly the tunnel, require a more intense construction period than the at-grade alternatives. The overall schedule depends on equipment and labour availability, and further details of staging which would be determined in later phases of design.

FIGURE 5 – PRELIMINARY ANALYSIS OF PRACTICAL ACCESS ROAD ALTERNATIVES

PRACTICAL ALTERNATIVE EVALUATION

Factor: Cost & Constructability

Performance Measure	Criteria/Indicator	Measurement/Units	Alterna	tive 1A	Alterna	ative 1B	Altern	ative 2A	Alt	ernative 2B	Alternative 3	Parkway
D	Les alle of Allermotives (Less 404 de Malalam)	10 montos	Option 1	Option 2	Option 1	Option 2	Option 1	Option 2	Option 1	Option 2		
Preliminary Construction	Length of Alternative (Hwy 401 to Malden)	Kilometres	9 020 (Plana A)		4 200 (9 4 200 (Diana A)		9	10	9 0 (Blazz A)	9	9 (000 (Plaza A)
Constructability	Preliminary Construction Costs (property costs	\$ millions CAD (2011)	920 (Plaza A)		1,360 (1	1,360 (Plaza A)		/90 (Plaza A)		JU (Plaza A)	3,780 (Plaza A)	1,600 (Plaza A)
constructability	not included)		750 (Plaza B and C) The life cycle cost for Alternative 1A is approximately 14% higher than Alternative 2A. All alternatives will require a similar degree of utility relocation prior to construction. Watercourses can be crossed by constructing a bridge at Grand Marais Drain / Turkey Creek, and culverts at Cahill and Lennon drains. 4 Pumping Stations & 10 SWM Ponds required		The life cycle cost for Alternative 1B is approximately 58% higher than Alternative 2A. All alternatives will require a similar degree of utility relocation prior to construction. Relocation of utilities for below grade alternatives such as Alternative 1B may be slightly more complex as additional excavation may be required. Watercourses will be crossed by constructing a short tunnel section under Grand Marais Drain/Turkey Creek and syphons at Cahill and Lennon drain. 5 Pumping Stations & 8 SWM Ponds required		620 (Plaz	620 (Plaza B and C)		Plaza B and C)	3,610 (Plaza B and C)	1,500 (Plaza B and C)
	Life Cycle Cost	Qualitative					Alternative 2A has the lowest life cycle cost.		The life cycle cost for Alterna than /	tive 2B is approximately 41% higher Alternative 2A.	The life cycle cost for Alternative 3 is approximately 306% (i.e. three times) higher than Alternative 2A. This is primarily due to higher maintenance cost: associated with safety support systems.	The life cycle cost for The Parkway is approximately 87%. higher than Alternative 2A.
	Site constraints (eg. utilities, watercourse crossings)	Qualitiative					All alternatives will require a similar degree of utility relocation prior to construction. All alternatives will have a slightly less impact on utilities since some utilities parallel to Highway 3/Huron Church Road can be retained, since most of the existing road will be maintained at the current location. s Watercourses can be crossed by constructing a small bridge at Grand Marais Drain/Turkey Creek, and culverts at Cahill and Lennon drains. 4 Pumping Stations & 8 SWM Ponds required 5 Pumping			a similar degree of utility relocation mative 2B will have a slightly less some utilities parallel to Highway e retained, since most of the existing at the current location. However, wo grade roadways may be slightly nal excavation may be required. sed by constructing a short tunnel Drain/Turkey Creek, and syphons a d Lennon drains. s & 7 SWM Ponds required	All alternatives will require a similar degree of utility relocation prior to construction. Relocation of utilities for below grade alternatives such as Alternative 3 may be slightly more complex as additional excavation may be required. Watercourses will be crossed b constructing a tunnel under Grand Marai the Drain/Turkey Creek, Cahill and Lennon drain. 4 Pumping Stations & 3 SWM Ponds	All alternatives will require a similar degree of utility relocation prior to construction. However, relocation of utilities for below grade alternatives such as the Parkway may be slightly more complex as additional excavation may be required. Watercourses will be crossed by constructing a triple cell culvert at Grand Marais Drain/Turkey Creek and syphons at Cahill and Lennon drains. 5 Pumping Stations & 7 SWM Ponds required
											Tequiled	
	Geotechnical considerations Qualitative and quantitative assessment of subsurface conditions		Due to the depth of excavation at certain locations, special construction measures are possibly required in 1 area approx 0.3 km in length to enhance stability of soils.		Due to the depth of excavation at certain locations, special construction measures are possibly required in 3 areas totalling approx. 2.5 km to enhance stability of soils.		Use to the depth of excavation at certain locations, special construction measures are possibly required in 1 area approx. 0.3 km in length to enhance stability of soils.		vation at certain locations, special possibly required in 3 areas totalling enhance stability of soils.	Due to the depth of excavation for turnel alternative, special construction measure- are possibly required for entire section from east of Howard Ave. to west of Huro Church Rd. (approx. 5.5 km) to enhance stability of soils.	Due to the depth of excavation at certain locations, special s construction measures are possibly required in 3 areas totalling approx. 2.5 km to enhance stability of soils.	
		Lengths of above grade, at grade, depressed and tunnel sections	0.6 km above grade, 3.8 km at km tunnel.	grade, 4.6 km below grade, 0	0.6 km above grade, 1.5 km at km tunnel.	grade, 6.8 km below grade, 0.1	0.6 km above grade, 4.1 km at km tunnel.	grade, 4.3 km below grade, 0	0.6 km above grade, 1.3 km km tunnel.	at grade, 7.0 km below grade, 0.1	0.6 km above grade, 1.9 km at grade, 0.5 km below grade, 6.0 km tunnel.	0.5 km above grade, 0.4 km at grade, 6.2 km below grade, 1.9 km tunnel.
	Construction staging/duration Qualitative assessment of construction duration for access road		The at-grade alternatives pose a smaller risk to schedule relative to below-grade and tunnel alternatives as they require less complex construction. These alternatives will require a less intense construction period than the below-grade or tunne alternatives. The overall schedule depends on equipment and labour availability, and further details of staging which would be determined in later phases of design.		The below-grade and tunnel al to schedule (with the tunnel p require significantly more con grade alternatives. These alter will require a more intense co grade alternatives. The o equipment and labour avail staging which would be detern	tunnel alternatives pose the greatest risk i unnel posing the greatest risk) as they more complex construction than the at- hese alternatives, particularly the tunnel, intense construction period than the at- less intense construction period than the below-grade or alternatives. The overall schedule depends on our availability, and further details of be determined in later phases of design. The at-grade alternatives pose a smaller risk to sche relative to below-grade and tunnel alternatives as they less intense construction. These alternatives as they intense construction period than the at- alternatives. The overall schedule depends on equipm labour availability, and further details of be determined in later phases of design.		ose a smaller risk to schedule nnel alternatives as they require fhese alternatives will require a d than the below-grade or tunne dule depends on equipment and details of staging which would be er phases of design.	The below-grade and tunnel atternatives pose the greatest risk tails schedule (with the tunnel posing the greatest risk) as they require a significantly more complex construction than the at-grade mel alternatives. These alternatives, particularly the tunnel, will and require a more intense construction period than the at-grade is be alternatives. The overall schedule depends on equipment and labour availability, and further details of staging which would be determined in later phases of design.		Dre below-grade and tunnel alternatives pose the greatest risk to schedule (with th tunnel posing the greatest risk) as they require significantly more complex construction than the at-grade alternatives. These alternatives, particularly the tunnel, will require a more intense construction period than the at-grade alternatives. The overall schedule depends on equipment and labour availability, and further details of staging which would be determined in later phases of desion.	The below-grade and tunnel alternatives pose the greatest erisk to schedule (with the tunnel posing the greatest risk) as they require significantly more complex construction than the at-grade alternatives. These alternatives, particularly s, the tunnel, will require a more intense construction period than the at-grade alternatives. The overall schedule depends on equipment and labour availability, and further e details of staging which would be determined in later phases of design.
	Assessment of construction risks Qualitative assessment of effects of traffic management, utility relocations, subsurface conditions on completion of construction within project timeframe (2013)		Construction duration and costs property acquisition, utility reloc resources (labour, equipment a project, as well as soil stability excavations (0.3 km).	will be highly influenced by ation, availability of adequate di materials) for duration of and risks associated with deep	Construction duration and costs property acquisition, utility reloc resources (labour, equipment a project, as well as soil stability excavations (2.5 km). The risks relocation, resources and exav- grade alternatives than at grade	s will be highly influenced by cation, availability of adequate mid materials) for duration of and risks associated with deep associated with utility ation are greater with below e alternatives.	Construction duration and cost property acquisition, utility relow resources (labour, equipment a project, as well as soil stability excavations (0.3 km).	s will be highly influenced by cation, availability of adequate and materials) for duration of and risks associated with deep	Construction duration and cr property acquisition, utility re resources (labour, equipmer project, as well as soil stabi excavations (2.5 km). The ri resources and exavation are alternatives than at grade all	sts will be highly influenced by location, availability of adequate t and materials) for duration of ity and risks associated with deep ks associated with utility relocation, greater with below grade ematives.	Construction duration and costs will be highly influenced by property acquisition, utility relocation and availability of adequate resources (labour, equipment and materials) for the duration of project, as well as soil stability and risks associate with deep excavations (5.5 km). The risks associated with utility relocation, resource and exavation are greatest with tunnel alternative in comparison to at grade and below grade alternatives.	Construction duration and costs will be highly influenced by property acquisition, utility relocation, availability of adequate resources (labour, equipment and materials) for duration of project, as well as soil stability and risks associated with deep excavations (2.5 km). The risks dassociated with dutility relocation, resources and exavation s are greater with below grade alternatives than at grade s alternatives.
	Degree of impact on traffic during construction Qualitative and quantitative assessment of ability to maintain access to existing crossings during construction		Access to and from existing crossing and local road network can be maintained during construction.			Access to and from existing crossing and local road network can be maintained during construction. Generally less disruption Huron Church/Highway 3 traffic compared to other alternatives as new access road is built beside the existing roadway.			 Access to and from existing crossing and local road network can be maintained during construction. 	Access to and from existing crossing and local road network can be maintained during construction.		
	Maintenance requirements Qualitative assessment of costs and disruption due to maintenance operations		Yearly operation and maintenar alternatives are lower than belo alternatives. Pumping stations require routin monitoring to provide debris tra handling and removal. Typical include: high water in the wet w motor, leakage, sediments leve gases, etc.	early operation and maintenance requirements for at grade ternatives are lower than below grade and tunnel ternatives. Umping stations require routine maintenance measures and ionitoring to provide debris trapping removal and sediments andling and removal. Typical features for monitoring leude: high water in the wet well, number of starts for each iotor, leakage, sediments level, motor/engine failure, smoke, ases, etc. Additional annual maintenance is required compared to at grade alternatives for syphons under Cahill and Lennon drains, but yearly operation and maintenance requirements for below grade alternatives are lower than tunnel alternative. Pumping stations require routine maintenance measures and monitoring to provide debris trapping removal and sediments handling and removal. Typical features for monitoring include: high water in the wet well, number of starts for each ases, etc.		Yearly operation and maintenance requirements for at grade alternatives are lower than below grade and tunnel alternatives. Pumping stations require routine maintenance measures and monitoring to provide debris trapping removal and sediments handling and removal. Typical features for monitoring include: high water in the wet well, number of starts for each motor, leakage, sediments level, motor/engine failure, smoke, gases, etc.		Additional annual maintenance is required compared to at grade s. alternatives for syphons under Cahill and Lennon drains, but yearly operation and maintenance requirements for below grade alternatives are lower than tunnel alternative. Pumping stations require routine maintenance measures and monitoring to provide debris trapping removal and sediments handling and removal. Typical features for monitoring include: high water in the wet well, number of starts for each motor, leakage, sediments level, motor/engine failure, smoke, gases, etc.		Yearly operation and maintenance requirements for the tunnel associated wit watercourse siphons and safety support systems (ventilation, lighting, CCTV) are higher than at grade and below grade alternatives. Pumping stations require routine maintenance measures and monitoring to provide debris trapping removal and sediments handling and removal. Typical features for monitoring include: high water in the wet well, number of starts for each motor, leakage, sediments level, motor/engine failure, smoke, gases, etc.	Additional annual maintenance is required compared to at h grade alternatives for syphons under Cahill and Lennon drains, but yearly operation and maintenance requirements for below grade alternatives are lower than tunnel alternative. Additional high level landscape maintenance will be required for the short tunnel sections; additional medium level landscape maintenance will be required adjacent to the multi-use trails. Pumping stations require routine maintenance measures and monitoring to provide debris trapping removal and r sediments handling and removal. Typical features for monitoring include: high water in the wet well, number of starts for each motor, leakage, sediments level, motor/engine failure, smoke, gases, etc.	

Practical Alternatives Evaluation Constructability Report for Access Road Alternatives

Appendix A Existing Utilities

NOTES:

	ALTERNATIVE 1A/1B										
Utilities along Huron Church/Talbot Corridor	Length (m)	Howard to Cousineau	Length (m)	Cousineau to Cabana	Length (m)	Cabana to Lambton/Grand Marais	Length (m)	Lambton/Grand Marais to Malden Road			
TELECOM											
Bell Canada - Underground	334	North	223	North	1416	North	394	North			
	884	South	1093	South	1759	South	661	South			
Boll Capada - Ovorboad	1420	North	002	North	40	North					
Dell Callada - Overnead	758	South	902 465	South	40 55	South	034	South			
	700	Couli	400	ooun		oodin	554	oodin			
GAS											
Union Gas - Major and Minor	1134	North	926	North	1308	North	601	North			
	1515	South	725	South	714	South	630	South			
City of Windsor - Storm	171	North	90	North	251	North	700	North			
	171	INULUI	09	NUTUT	420	South	1030	South			
Greater than 900 mm					620	North	250	North			
					430	South	16	South			
City of Windsor - Sanitary											
Less than 250 mm											
					149	South					
Greater than 250 mm	99	North	281	North	277	North	564	North			
					96	South	1266	South			
City of Windsor - Watermain											
150 DIA.	240	North	377	North	42	North	11	North			
	47	South	300	South	73	South	380	South			
200 DIA.	1146	North	245	North	40	North	31	North			
	21	South			13	South	56	South			
250 DIA.			85	North	56	North					
					1262	South	692	South			
300 DIA.					40	North					
100 514				N1 - 41	13	South					
400 DIA.			28	North			100	South			
500 DIA	42	North	02	30001			109	South			
	110	South									
600 DIA.	10	North									
HYDRO											
Enwin 27 - Overhead	64	North			62	North	81	North			
Francis 07, the descent	4507	NL 0	1000	N 19	1308	South	1287	South			
Enwin 27 - Underground	1597	North	1693	North	22	North					
Essex OH - June 27					147	South					
	87	South	52	South							
Essex UG - June 27											
Essex OH - Dia 1 - June 27											
	1004	South	1277	South							
OTHERS											
MaXess Networks					71	North	40	North			
					890	South	22	South			
Total Length of Utility moved (km)	10.7		8.8		11.7		9.8				

	ALTERNATIVE 2A/2B										
Utilities along Huron Church/Talbot Corridor	Length (m)	Howard to Cousineau	Length (m)	Cousineau to Cabana	Length (m)	Cabana to Lambton/Grand Marais	Length (m)	Lambton/Grand Marais to Malden Road			
TELECOM											
Bell Canada - Underground	357	North	209	North	902	North	343	North			
	834	South	1542	South	2238	South	1504	South			
Bell Canada - Overhead	1420	North	902	North	16	North	0700	Quality			
CA8	815	South	678	South	69	South	2706	South			
GAS	1274	North	017	North	706	North	62	North			
	1445	South	1090	South	853	South	1341	South			
	1110	Coun	1000	Coun	000	Codin	1011	Coun			
MUNICIPAL											
City of Windsor - Storm											
Less than 900 mm	184	North	81	North	61	North	243	North			
					420	South	854	South			
Greater than 900 mm					205	North	156	North			
					490	South	115	South			
City of Windsor - Sanitary											
Less than 250 mm											
					299	South					
Greater than 250 mm	113	North	261	North	220	North	197	North			
					96	South	2245	South			
City of Windsor - Watermain		N.L. and	077	k Level.		Ntead					
150 DIA.	222	North	3//	North	29	North	000	Couth			
200 DIA	47	North	400	North	200	North	903	North			
200 DIA.	21	South	230	Norun	13	South	156	South			
250 DIA	21	Coun			56	North	100	Coun			
200 Divit					1262	South	696	South			
300 DIA.					31	North					
					13	South					
400 DIA.											
			76	South			239	South			
500 DIA.	42	North									
	182	South									
600 DIA.	10	North									
HYDRO											
Enwin 27 - Overhead	74	North			27	North	40	North			
					1386	South	1237	South			
Enwin 27 - Underground	1597	North	1651	North	22	North					
Facey OH June 27					288	South					
	07	South	01	South							
Essey LIG - June 27	07	South	31	Journ							
Essex OH - Dia 1- June 27											
	983	South	1267	South							
OTHERS											
District Energy - Windsor Utilities	l		1								
MaXess					29	North	24	North			
					899	South	35	South			
Detriot and Canada Tunnel											
Canadian Transit Corporation											
Total Length of Utility moved	11.0	0	9.9		10.9		13.2				

	ALTERNATIVE 3										
Utilities along Huron Church/Talbot Corridor	Length (m)	Howard to Cousineau	Length (m)	Cousineau to Cabana	Length (m)	Cabana to Lambton/Grand Marais	Length (m)	Lambton/Grand Marais to Malden Road			
TELECOM											
Bell Canada - Underground	372	North	69	North	1562	North	385	North			
	875	South	901	South	1664	South	1350	South			
Bell Canada - Overhead	1420	North	902	North	41	North	0550	Courth			
	769	South	418	South	43	South	2008	South			
GAS											
Union Gas - Maior and Minor	1019	North	931	North	1310	North	604	North			
	1623	South	626	South	715	South	1326	South			
MUNICIPAL											
City of Windsor - Storm											
Less than 900 mm			94	North	419	North	501	North			
					430	South	932	South			
Greater than 900 mm					620	North	252	North			
					476	South	115	South			
City of Windoor Sonitory											
Less than 250 mm											
					187	South					
Greater than 250 mm	6	North	281	North	250	North					
					153	South	1975	South			
City of Windsor - Watermain											
150 DIA.	60	North	380	North	48	North	14	North			
	71	South	286	South	54	South	1002	South			
200 DIA.	1126	North	252	North	40	North	28	North			
	234	South			13	South	143	South			
250 DIA.			27	North	56	North					
					1262	South	696	South			
300 DIA.					40	North					
100 DIA			25	North	14	South					
400 DIA.				South			233	South			
500 DIA.	42	North	40	Coun			200	Coun			
	186	South									
600 DIA.	10	North			1						
HYDRO											
Enwin 27 - Overhead	92	North			ļ		89	North			
					1273	South	1244	South			
Enwin 27 - Underground	1597	North	1707	North	22	North					
Faces Old Ivan 27					122	South					
Essex OH - June 27	03	South	52	South							
Essex UG - June 27	33	South		JUUII							
	1				1						
Essex OH - Dia 1- June 27					1						
	1021	South	1277	South	1						
OTHERS											
MaXess Networks					79	North	43	North			
					868	South	35	South			
Total Length of Utility moved	10.6		8.3		11.8		13.5				

NOTES:

	PARKWAY										
Utilities along Huron Church/Talbot Corridor	Length (m)	Howard to Cousineau	Length (m)	Cousineau to Cabana	Length (m)	Cabana to Lambton/Grand Marais	Length (m)	Lambton/Grand Marais to Malden Road			
TELECOM		N. 4	001	N	150.1		105	N. 4			
Bell Canada - Underground	412 827	North	201	North	1584 2109	North	485	North			
	027	Oodin	1307	Couli	2105	oouin	1020	Obdin			
Bell Canada - Overhead	1420	North	902	North	49	North					
	788	South	507	South	91	South	598	South			
GAS											
Union Gas - Major and Minor	1069	North	944	North	1749	North	726	North			
	1831	South	1068	South	1006	South	1125	South			
MUNICIPAL											
City of Windsor - Storm											
Less than 900 mm	34	North	106	North	600	North	522	North			
					420	South	1066	South			
Greater than 900 mm					620	North	253	North			
					490	South	36	South			
City of Windsor - Sanitary											
Less than 250 mm											
Creater than 250 mm	6	North	224	North	145	South	504	Month			
Greater than 250 mm	0	North	331	North	048 125	North	504	North			
					120	South	1415	South			
City of Windsor - Watermain											
150 DIA.	104	North	411	North	109	North	34	North			
	82	South	456	South	137	South	360	South			
200 DIA.	1194	North	271	North	88	North	293	North			
	246	South			13	South					
250 DIA.			57	North	56	North	<u>696</u>	North			
					1262	South					
300 DIA.					63 12	North					
400 DIA			55	North	15	South	206	North			
			119	South			200	North			
500 DIA.	42	North									
	175	South									
600 DIA.	55	North									
HYDRO											
Enwin 27 - Overhead	92	North			133	North	287	North			
Epwin 27 - Underground	1506	North	1707	North	1421	North	1529	South			
	1090	INCILLI	1131	NULLI	278	South					
Essex OH - June 27											
	80	South	176	South							
Essex UG - June 27											
	210	South									
Essex OH - Dia 1 - June 27											
	1030	South	1277	South							
UTHERS											
MaXess Networks					115	North	128	North			
					899	South	211	South			
Total Length of Utility moved (km)	11.3		10.0		14.3		12.2				
Appendix B Typical Cross-Sections

ALTERNATIVE 1B

3.Qn

Appendix C Conceptual Construction Methods

ALTERNATIVE 1A

ALTERNATIVE 1B

ALTERNATIVE 2A

ALTERNATIVE 2B/ PARKWAY

ALTERNATIVE 2B/ PARKWAY(CON'T)

ALTERNATIVE 2B/ PARKWAY(CON'T)

ALTERNATIVE 3

Appendix D Conceptual Construction Staging Cross-Sections and Plans

R	CONSTRUCTION

		~
		<u></u>

RADE		-
TION		0
RADE		
TION		c i
RADE		-
TUDE	VNNNNN	/7

DER	CONSTRUCTION	

DER	CONSTRUCTION	

\propto	∞	∞		
//	//			
	//	//		

Appendix E Concepts at Municipal Drain Crossings

IAME:0:\DRIC\16_Structural\CADD\Turkey Creek Bridge\Sketch2~At 1E DATE:Feb 05, 2007 - 4:25pm

URS

DRIC-PRACTICAL ALTERNATIVES ALTERNATIVE "2A" - HIGHWAY 401 AT GRADE AT TURKEY CREEK, SOUTH OF HWY 3 (TALBOT ROAD/HURON CHURCH ROAD)

DRIC-PRACTICAL ALTERNATIVES ALTERNATIVE "2B-MODIFIED" - HWY 401 ABOVE TURKEY CREEK CULVERT, SOUTH OF HEY 3 (TALBOT ROAD AND HURON CHURCH ROAD)

METRIC DIMENSIONS ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE SHOWN

<mark>ፍ HWY 40</mark>1 EXISTING GROUND HWY 401 EB $\hat{\mathbf{U}}$ \hat{U} 仑 <u>SECTION "A-A"</u> 1:25 <u>EAST</u> TURKEY CREEK - EXISTING GROUND ---- H₩Y 401 Sec. 4. 14 al an an an an an a - TEMPORARY SULKHEAD

EAST HALF WIDTH OF TURKEY CREEK CLOSED DURING STAGE HALF OF TURKEY CREEK CULVERT TO BE CONSTRUCTED IN STAGE 1

<u>SECTION</u> "B-B" 1:25

 $\overline{\mathbf{v}}$

17.00

SKETCH 5

<u>SOUTH</u>

Appendix F Construction Duration and Resource Requirements
Basic Tunnel Civil Structural Works (Caisson Wall System) Schedule Estimation

Cycle time for a tunnel -half twin box 200 m modular length item 2-12

Second								nos of days																		
1 Constant terms during fragments of the register of the registe	Stage #	Activity Items	Quantity	unit	Production rate/day	Duration days	Resources	Trades	10 20	30	40	50	60	70	80	90	100) 11	10 1	120 1	130	140	150	160 ·	170	180 190
is plack if a range for all range for is of range for all ra	1	Caisson-External&Mid Walls	400	m	6	66	6 rigs/shift	30 rigs	50																	
10 2 ad - Maif from Box or X wall only 200 n 3 6 do 3 nageom 16 model in the Second and		(whole 1 km range, first half of twin Box							completed																	
In the service is backed as the service is according to be calculated in the ser	1a	2 nd -half twin box ext wall only	200	m	3	66	3 rigs/shift	15rigs																		
1b pussion all scatters 2000 m 6 400 frageword		On & off ramps Box tunnels/ below grade																								
Image: Securation for Base Stable Distance Stable Distance Stable Distance Stable Distance Stable 3 Install Signer of struts and walter 600 m 302 10 Tools Stort worker Together 4 Base Stable Robance Pour 400 m 100 40 10 Tools Stort worker Together 5 Install Signer of struts and walter 400 m 100 40 10 Tools Tools Stort worker 6 restrutting 2 Bayers 400 m 100 40 10 Tools Stort worker Together 7 Interior scal walles to lift 400 m 100 40 10 Tools Stort worker Together 7 Interior scal walles to lift 400 m 100 40 10 Tools Stort worker Together 8 Rod Stable Scalefol and Formwork 400 m 100 40 10 Tools Stort worker Stort worker 9 Rod Stable Scalefol and Formwork 400 m 100 40 10 Tools Stort worker Stort worker 10 Curing and Waterproofing layer 400 m 100 40 10 Tools Stort worker Stort worker 11 Backfill and compact with A 12400 m 1000 m 100 40 10 Tools Tools worker Stort worker<	1b	transition @ 3 locations	2400	m	6	400	6 rigs/shift	6 rigs	to proceed	d concu	urrently															
20m long modular section 0 0 0 3 Install 3 layers of studies and only and the section of th	2	Excavation for Base Slab	(200m x2x2 x3) 55000	m3	1000	55	2 crew	Excavators	, 1	7				•		•										
a Install 3 layers of struts and waters 600 m 30 20 1 creat Number of the struts and waters 600 m 100 440 1 creat Number of the struts and waters Numee of the s		200m long modular section					2 0.01																			
3 Initiation a logits of runs and waters 0.00, m 3.00, 20, 10 cm 4 Ress State RestarGonce, Pour 100, 41, 10 cm, 10, 44, 10 cm, 10		Install Q Jacons of structure and walking			20		1																			
4 Base Stab-RebarkSconc. Pour (20 base implicitancy) 4000 m2 100 440 10 ever (20 base implicitancy) 5 Interior seal wall-upper III 400 m 10 40 10 ever (20 base implicitancy) 6 re-struction (20 base implicitancy) 400 m 10 40 10 ever (20 base implicitancy) 7 Interior seal wall-upper III 400 m 10 40 10 ever (20 base implicitancy) 100 46 10 ever (20 base implicitancy) 10	3	install 3 layers of struts and walers	600	m	30	20	1 crew	Steel workers riagers																		
interior seal valuel-s tilt dot n 0 dot 1 occurs reservator 6 nestroting seal valuel-s tilt 400 m 10 40 1 occurs 7 interior seal valuel-s tilt 400 m 10 40 1 occurs 8 Roof Stab Redar & Conc. Pour 400 m2 100 44 1 occurs 9 Roof Stab Redar & Conc. Pour 400 m2 100 44 1 occurs 10 Guring and Waterproofing layer 400 m2 100 44 1 occurs 11 Backfill and compact 1440 m3 440 1 occurs Record Stab Redar & Conc. Pour 4400 m2 100 Conceptor Record Stab Redar & Conc. Pour 4400 m2 100 Conceptor Record Stab Redar & Conc. Pour 4400 m2 100 Conceptor Record Stab Redar & Conc. Pour 4400 m2 100 Conceptor Record Stab Redar & Conc. Pour 4400 m2 100 Conceptor Record Stab Redar & Conc. Pour Record Stab Redar & Conc. Pour Record Stab Redar & Conceptor Record Stab Redar & Conc. Pour	4	Base Slab-Rebar&Conc. Pour	4800	m2	100	48	1 crew	re-bar /labor																		
0 interformed and water level 10	5	(25m bay length/6days)	400		10	40	1 01014																			
6 n=strutting-2 layers 400 m 10 40 Crew Sive worker 7 Interfor sail will-upper lift 400 m 10 40 Crew re-ber / Moor 8 Roof Slab Scaffoid and Fornwork 400 m 10 40 Issue working 9 Roof Slab Scaffoid and Fornwork 400 m 100 45 Issue working 9 Roof Slab Scaffoid and Fornwork 400 m 100 45 Issue working 9 Roof Slab Scaffoid and Fornwork 400 m 100 46 Issue working 9 Roof Slab Scaffoid and Fornwork 400 m 00 0 Issue working 10 Curing and Waterproofing layer 400 m 70 Issue working days for 1 st cycle of 20m half twin box 11 Backfill and compact 1400 m3 480 30 Iterw Issue working days for 1 st cycle of 20m half twin box 12 Road Work/restoration 200 m 7 30 Iterw Iterw / 10 Iterw / 10 Iterw / 10 Iterw / 10 Ite	5		400	- 111	10	40	TCIEW	re-bar /labor												-						
7 Interior seal wall-upper lift 400 m 10 10 metrior seal wall-upper lift 400 m metrior seal wall-upper lift 400 metrior seal wall-upper lift 400 metrior seal wall-upper lift metrior seal wall-upper lift 400 metrior seal wall-upper lift metrior seal wall-upper lift metrior seal wall-upper lift 400 metrior seal wall-upper lift metrior seal wall-upper	6	re-strutting-2 layers	400	m	10	40	1 crew	Steel workers						-							_					
1 interformed was waitupped in 10	7	Interior and well upper lift	400		10	40	1000	riggers								_										
8 Roof Slab Scafoid and Formwork 4800 100 48 1sel-crew expenses 3 Roof Slab-Robar & Conc. Pour 4800 10 100 48 1sel-crew rebar / Robor 10 Curing and Waterproofing layer 4800 100 48 10 100 48 10 100 48 100 100 48 100 100 48 100 100 100 48 100 100 48 100 100 100 48 100 100 100 48 100 <td></td> <td></td> <td>400</td> <td></td> <td>10</td> <td>40</td> <td>TCIEW</td> <td>re-bar /labor</td> <td></td>			400		10	40	TCIEW	re-bar /labor																		
Image: state in the s	8	Roof Slab Scaffold and Formwork	4800	m2	100	48	1set-crew	carpenters																		
9 Roof Slab-Rebar & Conc. Pour 4800 m2 100 448 1 crew re-bar./kbor 10 Curring and Waterproofing layer 4800 m2 800 600 1 crew labor 11 Backfill and compact 14400 m3 480 300 1 crew Babor 12 Read Work/restoration 200 m 7 300 1 crew Excewators 12 Read Work/restoration 200 m 7 300 1 crew Excewators 20 Reference Calsson drilling rigs / day shift Design Propose to use calsson wall as permanent wall integrating with concrete wall 210 net working days for 1 st cycle of 200m half-twin box 10 hour day shift Design Design Propose to use calsson wall as permanent wall integrating with concrete wall 210 net working days for 1 st cycle of 200m half-twin box 10 hour day shift Design 0 Design Propose to use calsson wall as permanent wall integrating with concrete wall 210 net working days for 1 st cycle of 200m half-twin box 10 hour day shift Design 0 Comparison Estimation 200 200 200 200 <td></td> <td>(25m bay length/6days)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>		(25m bay length/6days)						-																		
10 Curing and Waterproofing layer 480 m2 60 1 crew 11 Backfill and compact 1440 m3 480 30 1 crew 12 Read Work/restoration 200 m 7 30 1 crew Excerviors 12 Read Work/restoration 200 m 7 30 1 crew Excerviors 20 m 7 30 1 crew paving Paving Paving Schedule Allow the construction of the ramps concurrently with the box tunnel section construction within the 3 year (into a long on caison wall, by open cut method for shallow grade transition 210 net working days for 1 st cycle of 200m half twin box thus, those sections / 15 10 hour day shift Design Propose to use caisson wall as permanent wall integrating with concrete wall droft fm so and eaver level cut off. Thus omitting the use slab footing for the retaining wall. 51 crease 610 hour day shift 15 dillings for 6 femp-tunnels 0 0 Concrete Pour Estimation 24 years (into a long the sing can bounds and cast saving can be achieved 10 hour day shift being frage / day on thalf twin box the sing can bounds and cast saving can be achieved 10 hour day shift on the fam fom fom fom fam psection x 5 section x 1 section x 1 (long day fom fam and compsect CAISSON Paving t	9	Roof Slab-Rebar &Conc. Pour	4800	m2	100	48	1 crew	re-bar /labor																		
10 Curing and Waterproofing layer 4800 m2 80 60 1 crew hebor 11 Backfill and compact 14400 m3 460 30 1 crew Excavators 12 Road Work/restoration 200 m 7 30 1 crew Excavators 12 Road Work/restoration 200 m 7 30 1 crew Excavators 2 Road Work/restoration 200 m 7 30 1 crew Excavators 3 Schedulde Allow the construction of the rampc 50 concurrently with the bx tunnel section construction within the 3 year inform frame/750 working days 10																			_							_
11 Backfill and compact 14400 m3 480 30 1 crew 12 Road Work/restoration 200 m 7 30 1 crew 12 Road Work/restoration 200 m 7 30 1 crew Schedule Allow the construction of the ramps concurrently with the box tunnel section construction within the 3 year time frame(750 working days) 10 hour day shift 10 hour day shift Besign Propose to use calson wall, by open cut method for shallow grade transition 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift Design Propose to use calson wall as permanent wall integrating with concrete wall as the rest of the shift with box to complete within 4.7 years, including all Civil /M&E works 30 (68 dinlings/c020m-section) + 35 sections ² /1 to box is dinling for the retaining wall. Design Propose to allow the calsson to a deeper toe level to achieve lateral resistance and water level cut off. Thus omitting the use slab footing for the retaining wall. 10 erew 10 hour day shift both win section. North & South bounds. 0 Concrete Pour Estimation 20 Tri-axet Trucks(20 ton) 10 location trips/day 10 Our al grade rad/works 3.4 years 3.4 years 3.4 years Stabs 24x25x1.5x2=1800m3/	10	Curing and Waterproofing layer	4800	m2	80	60	1 crew	labor																		
12 Road Work/restoration 200 m 7 30 1 crew Compactors 12 Road Work/restoration 200 m 7 30 1 crew Excervators 14 Road Work/restoration 200 m 7 30 1 crew Parking 15 Road Work/restoration 10 met 10 met 10 met 16 Allow the construction of the ramps concurrently with the box tunnel section construction within the 3 year time frame(750 working days) 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift 17 Design Propose to use caisson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 210 (6H drill rigs/200m-section) X 5 sections/1 15 drill rigs/200m-section) X 5 sections/1 15 drill rigs for the 6km 2nd -half twin box thus, 1000m(1 km) it need 5 X 200m section-crews 210 (6H drill rigs/200m-section) X 5 sections/1 15 drill rigs/200m-section) X 5 sections/1 15 drill rigs for the 6km 2nd -half twin box 18 Design Propose to allow the caisson to a deeper too level to achieve lateral resistance and water level cut off. Thus omiting thus as slab bototing for the retaining wall. 70 crew /10 hour day shift for both twin section, North &South bounds. 20 Excewator CAT320 (B cons/1 half twin box too malfway and commislion) 1 year 20 truck-round trips/day<	11	Backfill and compact	14400	m3	480	30	1 crew	Excavators											_							
12 Road wontrrestoration 200 m 1 30 Interval Description 12 Road wontrrestoration 200 m 1 30 Interval paving 2 Schedule Allow the construction of the ramps concurrently with the box tunnel section construction within the 3 year time frame(750 working days) 30 paving 10 hour day shift for the analysis, 2.8 years for 1 st cycle of 200m half-twin box tune, 1000m(1 km) in need 5 X 200m section-crews 10 hour day shift 51 calson drilling rigs / day shift Det Design Propose to use calsson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 51 calson drilling rigs / day shift Det 30 (6f drill rigs for 6 film day 200m / a day shift 51 calson drilling rigs / day shift 51 calson drilling rigs / day shift 51 6 drill rigs for 6 film day 200m / a day shift 51 6 drill rigs for 6 film day 200m / a day shift 51 calson drilling rigs / day shift 51 6 drill rigs for 6 film day 200m / a day shift 51 calson drilling rigs / day shift 51 calson drilling rigs / day shift 51 10 6 drill rigs for 6 film day 200m / a day shift with with e day a day are rigs of the day are day are rigs of the day are day are rigs of th	40				7	20	1	Compactros																		
Schedule Allow the construction of the ramps concurrently with the box tunnel section construction within the 3 year time frame(750 working days) Method Assume 4 and reas below grade using no calson wall, by open cut method for shallow grade transition 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift Design Propose to use calisson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift Design Propose to use calisson to a deeper to level to achieve lateral resistance and water level cut off. Thus omitting the use stab footing for the retaining wall. 210 net working days for 1 st cycle of 200m half-twin box thus section. North & South bounds. 10 hour day shift 0 O To complete within 4.7 years, including all Civil /M&E works for 1 is wing construction priord for use staving can be achieved Front end loader for use of 1 calsson drilling rigs 30 Excavation Estimation to use staving can be achieved 0 0 0 Concrete Pour Estimation Stab 24x25x1.5x2=1800m3/day 92 truck-round trips/day 120 Excavation Estimates twin a day a shift the poursiday 292 truck-round trips/day Stab 100 truck-round trips/day 120 trucks/day 120 trucks/day	12	Road Work/restoration	200	m	/	30	1 crew	Excavators paving																		
Schedule Allow the construction of the ramps concurrently with the box tunnel section construction within the 3 year time frame(750 working days) Method Assume 4 mor less below grade using no calson wall, by open cut method for shallow grade transition 210 net working days for 1 st cycle of 200m half-twin box tunnel section correws Design Propose to use calsson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 210 net working days for 1 st cycle of 200m half-twin box tunnel section / x5 section /								<i>p</i> g																		
Schedule Andw the Construction of the range 750 working days) Method Assume 4m or less below grade using no caison wall, by open cut method for shallow grade transition 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift Design Propose to use caisson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 210 net working days is 2, 2 years for ts 1 half 6 km 13 0 (6# dill rigs 200m-section) x 5 sections/1 Design Propose to use caisson to a deeper toe level to achieve lateral resistance and water level cut off. Thus omitting the use slab footing for the retaining wall. To complete within 4.7 years, including all Civil /M&E works. 10 for w/10 hour day shift for both twin section. North &South bounds. 0 0 0 Excavator CAT320 Front end loader 16 km 0 0 10 crew /10 hour day shift for both twin section. North &South bounds. 120 Tri-axle Trucks(20 ton) 120 truck-round trips/day 0 0 Concrete Pour Estimation Sabs 24x25x1.5x2=1800m3/day 92 truck-round trips/day 8 ab 0 0.3 year Af grade roadworks 3.4 years Sabs 24x25x1.5x2=1800m3/day 200 truck-round trips/day 6 round -trip/truck/ 1200 truck-round trips/day 0 0.3 year Testing and commissioning <td>Sabadula</td> <td>Allow the construction of the romage</td> <td>o nourrontly wit</td> <td>th the he</td> <td>v tunnal aaatia</td> <td>noonotru</td> <td>otion</td> <td></td>	Sabadula	Allow the construction of the romage	o nourrontly wit	th the he	v tunnal aaatia	noonotru	otion																			
Method Assume 4m or less below grade using no caison wall, by open cut method for shallow grade transition 210 net working days for 1 st cycle of 200 m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift 51 caisson drilling rigs /day shift 50 0 Design Propose to use caisson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 210 #stx s = 635 net working days 16 / 4 start start fixm 51 caisson drilling rigs /day shift 50 6 drill rigs /200m; section / x 5 sections // to caisson drilling rigs / day shift be dwn adver level cut of . Thus omitting the use stals footing for the retaining wall. To complete within 4.7 years, including all Civil /M&E works of 6 drill rigs /200m; section // x 5 sections // x 5 secons // x 5 sections // x 5 sections // x 5	Schedule	within the 3 year time frame(750 work	ing days)		x tunner sectio	on constru	cuon																			
grade transition 210 net working days for 1 st cycle of 200m half-twin box thus, 1000m(1 km) it need 5 X 200m section-crews thus, 1000m(1 km) it need 5 X 200m section-crews 10 hour day shift Design Propose to use caisson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections 210 net working days is 0.3 years for the 2 nd half 6 km 51 caisson drilling rigs (day shift Det 30 (6# drill rigs/200m-section) X 5 sections/1 Design Propose to allow the caisson to a deeper toe level to achieve lateral resistance and water level cut off. Thus omitting the use slab footing for the retaining wall. To complete within 4.7 years, including all Civil /M&E works 5 d dill rigs for 6 ramp-tunnels 0 Space, time and cost saving can be achieved To extruction Schedule Estimation Basic tunnel and Ramp Structures and at grade roadworks 3.4 years M&E supply and installation 1 year Slabs 24x25x1.5x2=1800m3/day 200 truck-round trips/day 12 w ramp: 2k m3/d ramp 2k m3/day We supply and installation 1 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12.18 m deep 1#/rig/ day shift by Anchor Shoring Verail Total 2620m3/day 292 truck-round trips/day 6 round -trip/txck 120 trucks/day	Method	Assume 4m or less below grade using	g no caison wal	ll, by ope	en cut method i	for shallow	ı										-									
Design Propose to use caisson wall as permanent wall integrating with concrete wall for the entire tunnel and ramp sections Design Propose to allow the caisson to a deeper toe level to achieve lateral resistance and water level cut off. Thus omitting the use slab footing for the retaining wall. Space time and cost saving can be achieved Overall Construction Schedule Estimation Basic tunnel and Ramp Structures and at grade roadworks M& E supply and installation 1 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DY high mast light, 2001 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20		grade transition						210 net workin	g days for 1	st cycl	le of 200	0m half	f-twin b	oox				10) houi 51	r day s	shift	on dril	lina ric	re /da	/ ehif	t Dot
for the entire tunnel and ramp sections 635+210=845 working days is 3.4 years for the 2 nd half 6 km 15 drill rigs for the 6km 2nd -half twin box Design Propose to allow the caisson to a deeper toe level to achieve lateral resistance and water level cut off. Thus omitting the use slab footing for the retaining wall. To complete within 4.7 years, including all Civil /M&E works 6 drill rigs for the 6km 2nd -half twin box Space , time and cost saving can be achieved 10 crew /10 hour day shift for both twin section, North &South bounds. 120 Tri-axle Trucks(20 ton) (10 loads / 10 loads / 1	Design	Propose to use caisson wall as perma	anent wall integ	rating w	ith concrete wa	all		210+ 85x 5 =	635 net wor	kingday	s,ie 2.6 y	/ears foi	r 1st hal	f 6km					51	30 (6	5# dri	ll rigs/:	200m-s	ection) x 5 s	ections/1
Design Propose to allow the caisson to a deeper toe level to achieve lateral resistance and water level cut off .Thus omitting the use slab footing for the retaining wall. To complete within 4.7 years, including all Civil /M&E works 6 6 for full rigs for 6 ramp-tunnels Space ,time and cost saving can be achieved 0 10 crew /10 hour day shift for both twin section, North &South bounds. 30 Excavator CAT320 Front end loader (50 ton) 0 0 10 crew /10 hour day shift for both twin section, North &South bounds. 120 Tri-axle Trucks(20 ton) (10 loads / 120 0 0 Concrete Pour Estimation Basic tunnel and Ramp Structures and at grade roadworks 3.4 years M&E supply and installation 1 year Slabs 24x25x1.5x2=1800m3/day 200 truck-round trips/day Slab 10k m3/c 12k m3/c Testing and commissioning Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m 12-18 m deep 1#/rig/ day shift by Anchor Shoring 120 trucks/day	-	for the entire tunnel and ramp section	is	-				635+210=845 wo	rking days ie	3.4 year	s for the	2 nd ha	alf 6 km							15 dr	rill rig	s for th	ne 6km	2nd -h	nalf tw	vin box
Project of and water level cut off. Thus omitting the use slab footing for the retaining wall. for full swing construction priod 15 Cranes (50 ton) 0 10 crew /10 hour day shift for both twin section, North &South bounds. 15 Cranes (50 ton) (10 loads / 0 0 Concrete Pour Estimation 120 Tri-axle Trucks(20 ton) (10 loads / 0 0 Concrete Pour Estimation 51x 16= 820 m3/day 92 truck-round trips/day Slabs 0 Sais tunnel and Ramp Structures 3.4 years Slabs 24x25x1.5x2=1800m3/day 200 truck-round trips/day ramp: 2k m3/c M&E supply and installation 1 year Testing and commissioning 0.3 year 6 round -trip/truck 120 trucks/day 120 trucks/day 120 trucks/day Peak period Total 2620m3/day 292 truck-round trips/day 6 round -trip/truck 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 0.3 year 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day 120 trucks/day <t< td=""><td>Design</td><td>Propose to allow the caisson to a dee</td><td>oper toe level to</td><td>achieve</td><td>lateral resista</td><td>nce</td><td></td><td>To complete</td><td>within 4.7 y</td><td>/ears,ii drilling r</td><td>ncludin</td><td>ng all C</td><td>Civil /N</td><td>1&E w</td><td>orks</td><td></td><td></td><td></td><td>30</td><td>6 dr</td><td>rill rig</td><td>s for 6</td><td>ramp- 17320</td><td>unnels F</td><td>s ront e</td><td>nd loader</td></t<>	Design	Propose to allow the caisson to a dee	oper toe level to	achieve	lateral resista	nce		To complete	within 4.7 y	/ears,ii drilling r	ncludin	ng all C	Civil /N	1&E w	orks				30	6 dr	rill rig	s for 6	ramp- 17320	unnels F	s ront e	nd loader
Space ,time and cost saving can be achieved 10 crew /10 hour day shift for both twin section, North &South bounds. 120 Tri-axle Trucks(20 ton) (10 loads / 0 0 Concrete Pour Estimation Basic tunnel and Ramp Structures 3.4 years and at grade roadworks 3.4 years M& E supply and installation 1 year Testing and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12-18 m deep DVP high mast light, 2001 1m dia 12-18 m deep Main 11/2 11/2 Ternake Trucks(20 ton) 10 crew /10 hour day shift by Anchor Shoring	Doolgii	and water level cut off .Thus omitting	the use slab fo	oting for	the retaining v	wall.		for full swing cor	nstruction per	riod	190								15	C	ranes	5		(50 ton)
0 Excavation Estimation Basic tunnel and Ramp Structures and at grade roadworks 3.4 years M& E supply and installation 1 year Testing and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring		Space ,time and cost saving can be a	chieved					10 crew /10 ho	our day shift	for both	n twin se	ection, N	North &	South I	oounds	8.		1	20	Tr	ri-axle	• Trucl	(s(20 to	n)	(10 loads /
Overall Construction Schedule Estimation base Basic tunnel and Ramp Structures 3.4 years and at grade roadworks 3.4 years M& E supply and installation 1 year Testing and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring 1.2m-dia 9m deep 1#/rig/ tashift	0							Concrete Pou	ur Estimatio	on														E	cavati	ion Estimat
Overall Construction Schedule Estimation Basic tunnel and Ramp Structures and at grade roadworks 3.4 years M& E supply and installation 1 year Testing and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring Number of the model of the				1																				ba	ise	
and at grade roadworks 3.4 years and at grade roadworks 3.4 years M& E supply and installation 1 year Testing and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring N2. 9m deep 1#/right shift	Overall Co	Distruction Schedule Estimation						Caisson Wall			51x 1	6= 820	u m3/da	ay		92 tri	uck-ro	und f	trips/c	Jay				SI	ab	10k m3/d
M& E supply and installation 1 year Testing and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring 1.2m-dia 9m deep 1#/right shift		and at grade roadworks	3.4 years					Slabs			24x25	5x1.5x	2=1800	0m3/d	ay	200 t	ruck-r	round	d trips	s/day				ra	mp	2k m3/d
Lesting and commissioning 0.3 year Target Total Required Time 4.7 years Reference Caisson production rate project records: DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring Kennedy/Morningside 1.2m-dia 9m deep 1#/right shift		M& E supply and installation	1 year					roof,/ base cre	w@2 half tw	inbox z	zone, ie	4 pour	rs/day		-		-					~				12k m3/c
Reference Caisson production rate project records: 12-18 m deep 1#/rig/ day shift by Anchor Shoring DVP high mast light, 2001 1m dia 12-18 m deep 1#/rig/ day shift by Anchor Shoring Kennedy/Morningside 1.2m-dia 9m deep 1#/right shift		Lesting and commissioning	0.3 year					Peak	period	Tota	l		2620n	n3/da	/	292 t 49 tr	ruck- ucks/	roun dav	id trip	ps/day	y e	ז roun	d -trip/t	ruck/12	200 tr 20 tru	uck-rour Icks/dav
DVP high mast light, 20011m dia12-18 m deep1#/rig/ day shift by Anchor ShoringKennedy/Morningside1.2m-dia9m deep1#/night shift			ate project rec	ords:							u		<u></u> y								.cno/uuy					
Kennedy/Morningside 1.2m-dia 9m deep 1#/night shift				1m dia	12-	18 m de	еер	1;	#/rig/ d	ay shi	ft by A	nchoi	r Shor	ing												
Singapore MRT Yishun Line 1986 1m dia 20-25m deep 1#/rig/day shift by GTM-Coignet/Trevi 960# in 10months, with no casing, usin					Singapore MRT	ngsiae ' Yishun Lin	e 1986	1.2m-dia 1m dia	9m 20-2	ueep 25m de	ер	1#/	1#/rig/	/day sl	nift bv	GTM	-Coigi	net/T	revi		ç	960# in	10mor	ths, wit	h no c	asing, usin

Basic Tunnel Civil Structural Works(Diaphragm Wall System Alternative) Schedule Estimation

Cycle time for a tunnel -half twin box 200 m modular length item 2-12

230 240 400 day	230	220	210	200	

1000m by 5 crews

(500m3/day/equipment)

130 truck-trips/day

2 major pourslab/day

6 round-trip/truck/day

Prepared by: Eric So Rev. June 2006

Basic Civil Structural Works Depressed Road Alternative Schedule Estimation

Cycle time for a Depressed Road Full Section 400 m modular length item 2-12

																	nos of	days						
			1	Production	Duration																			
Stage #	Activity Items	Quantity	unit	rate/day	days	Resources	Trades	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170
1	Caisson-External Walls	6000	m	18	335	15 rigs/shift	-	150m r		L														
	(whole 3 km range full section)	all 1.2 m dia						comple	eted															
	On & off ramps Box tunnels/																							
	below grade																							
1b	transition @ 3 locations	2400	m	7.2	335	6 rigs/shift	6 rigs	to proc	eed	concu	irrently	/												
		(200m x2x2 x3)												•										
2	Excavation for Base Slab	93600	m3	2000	50	2 crew	Excavators								2									
	400m,asume 6.5m deep average						-																	
	x 36 m excavated width						1																	
3	Road subbase laver/structure	400	m	25	16	1 crew	-										_							
		100			10	1 01011																		
4	Base Slab-Plain Conc.laying	400	m	25	16	1 crew	labor																	
5	Interior seal walls-1 st lift	800	m	20	40	2 crew	re-bar /labor				-							-						
							-																	
6	Interior seal wall-upper lift	800	m	20	40	2 crew	re-bar /labor												-					
																					1			
7	Paving	400	m	200	2	1 crew	dozers																	
· ·		400		200	2	TOCW	navers																	
							parere																	
Schedule	Allow the construction of the ramps	concurrently w	vith the	Depressed Ro	ad constru	ction																		
	within the 3 year time frame(750 wor	king days)																						
Method	Assume 4m or less below grade usir	ng no caison wa	all, by o _l	pen cut metho	d for shalle	w						_					_	40.1						
	grade transition						135 net workin	g days fo	or 1 s	st cycl	e of 40	0m se	ection I	ength				10 r	nour d	ay shi	itt son dr		ian li	dov
Design	Propose to use caisson wall as perm	anont wall into	aratina	with concrete	wall		thus, 3000m(3	= 465 no	t need	a rkina	dave i	io 2 v	oare					30	0		זר ע Son ur ע א או	m_sec	tions t	to pr
Design	for the depressed road and ramp see	ctions	grating		wan		1001 00 X0.0-	- 405 116		ikiig	uays,i	16 Z y	cais						15	drill r	ias for	the 3k	m 1 s	st -h
							To complete	within 3	vea	rs.ind	luding	a all (Civil /N	1&E w	orks				6	drill r	ias for	6 ram	o struc	cture
Design	Propose to allow the caisson to a de	eper toe level to	o achiev	e lateral resis	tance		Propose to use	36 caiss	on dri	illing r	igs	0						1(D	Exca	vator C	AT320		From
	and water level cut off .Thus omitting	g the use slab f	ooting f	or the retainin	g wall.		for full swing co	nstruction	n perio	od								1(D	Crane	es			(50
	Space ,time and cost saving can be a	achieved					6 crew per	10 hou	r da	i y sh i	ift							50	D	Tri-a>	kle Tru	cks(20	ton)	
							Earth moving grade Road area	say 5 s:	5000r	m3ma	ax/day	@pe	ak per say ′	riod, ie 1500m	e <mark>500</mark> I 3/day	loads ie 1	s/day (50 loa	<mark>500 tr</mark> ds/day Tota	<mark>uck-ro</mark> / (150 al 650	und ti truck- truck	rips/da -trips/o c trips	ay) day) /day	50 tru 15 tru	ucks ucks
							road grading tot	tal					say 4	0mx6l 240,0	kmx1n)00m3	n B								
Overall Co	Description Schedule Estimation Basic Depressed Road and Ramp Structures	2years					Concrete caisso	on volume			36 #/	day)	(14 m3	8/# =	550m	n3/da	ıу	60 tr	uck-tr	ips/da	ау			
	M& E, sump pump supply and installation Testing and commissioning Target Total Required Time	1 year 0.5 year 3.5 years				Reference	Caisson prod DVP high mast Kennedy/Morn Singapore MR	luction r t light ingside T Yishun	rate 2001 Line	proje 1986	ct reco 1m di 1.2m 1m di	o rds: ia -dia ia	12 to 9m d 20-2	18 m eep 5m dee	deep ep		1#/ri 1#/ri 1#/ri	g/ day g/nigh g/day	shift b t shift shift by	y Ancl / GTM	hor Sh I-Coigr	oring net/Tre	w stee w stee witho	el ca el ca ut ca

(Exact Material Quantity To Be determined in or	ost estimate				
			Estimated	Target	
Areas Activity Items	Quantity unit	Production rate/day	Duration days	months	Equipment
Typical Items For the Expressway					avaavata -
site clearance/top soil removal	L.S.			3	excavator
grading-cut and fill	L.S.			3	scraper
underground services	L.S.				excavator
subgrade compaction	L.S.			3	30 ton compactor
Cotch Dooin					
Subdrain	10 500 m	400	1 27	/ 15	
	10,000 m			1.5	truck
Granular A 300mm thk.	15,000 m-lane	250	0 60) 3	dozer
			_		front-end loader
100 mm open grade Drainage Layer	15,000 m-lane	250	60) 3	compactor
260 mm thk. Plain Conc Pavement	9,000 m-lane	400	0 23	3 1.5	paving machine
Shoulder Device	6.000	100			truck
4 X 3m wide	6,000 m-iane	400	15	n 1	
Barrier Wall	4,500 m	300	0 15	5 1	crane
Noise Wall	3,000 m	60	0 50) 2	
			-		
Light pole(High Mast)	15 ea		2	2 2	
		+	+	+ +	
		+	-		
		1			
Typical Items For the Services Road(optional)				
site clearance/top soil removal	L.S.			3	excavator
					dozer, backhoe
grading-cut and fill	L.S.			3	scraper
subgrade compaction	L.Ə.		+	2	30 ton compactor
	L.J.		1	2	
Catch Basin					
subdrain	6,000 m	400	0 15	5 1	
Granular B 500 mm thk	12,000 m-lane	200	0 60) 3	truck
Granular & 200mm this	12 000 m lana	05/	n 50		dozer
Granular A 300mm tnk.	12,000 m-lane	250	50	2	ront-end loader
Conc. Curb and Gutter	6.000 m	200	0 30) 1.5	compactor
	0,000 m	200			
150 mm thk. Hot Mix	12,000 m-lane	400	0 30) 1.5	paving machine
Shoulder	3,000 m	400	0 75	5 4	
Sidowalk	2 000	100		4 -	
Sidewaik	3,000 m	100	J 30	v 1.5	
				+ +	
Landscape Area	12,000 m2	600	20) 1	
	,			+	

BasicCivil Works(At Grade Road Alternative)

Schedule Estimation -Use range approach

Cycle time for a modular range of 1500m (1.5 km) (Exact Material Quantity To Be determined in cost estimate

					Estimated	Target	_	nos. of months
Areas	Activity Items	Quantity	unit	Production rate/day	Duration days	months	Equipment	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
								Use 4 crews for the entire 6km Service Roads in 21 months
	Light pole							1
	Underpass for the entire 6km range,	proceed in 2-3	km zon	es concurrent	у.			
	Caisson wall	6,400	m	28	230	11	I 14 Drill rigs/3km zone	
	2x(1600+1600x2/2)=6400m							
	Excavation	750,000	m3	3000	250	12	2 8 excavators	
	(1600+3200/2)x 6.5x 36						8 dozers/loaders	
	Seal Wall	6,400	m	40	160	6	3	
	we die aller aller aller fan ta the second aller	d O ala a dad a						_
	grading and road refer to the main road	d Schedule						_
			-			-		_
	Road/Bridge Creesings	10					0.0 energy d energy (bridge	-
	and Crook Crossing						2-3 crews, T crew /bridge	
							Drill rige	
							Dhii fiys	
	Foundation capping beam							
	Piers							
	Bridge, Beam Placing						crane	
	2						truck	-
	Bridae Deck							1
								-
	Bridge furniture							
								7
	Paving						paving machine	
		-		-	•			
							Earth moving	underpass: 3000m3max/day @peak period, ie 300 loads/day (300 truck-trips/day)
								initial overall excavation/grading: 300 loads/day (300 truck-trips/day)
								road grading total say 40mx6kmx1m
								240,000m3
								underpass total 750,000m3
								overall total 1,000,000m3 approx.
							Concrete caisson volume	28#x14 m3/# =400 m3/day
ł								
I								
ł								

29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
_		-	-		-			-											-
0	truc truc	cks/ cks/	'day 'day	1	10 10	load load	ds/tr ds/tr	uck uck	/da /da	y y									