2. Alternatives

This Section includes the DEIS language followed by the Preferred Alternative discussion at the end of each subsection surrounded by a green outline, like that around this paragraph.

The decision-making process that led to the Preferred Alternative is documented at the end of this section. The Preferred Alternative is identified as the crossing system labeled X-10B because:

- With Crossing X-11, brine well issues on the Canadian side of the border indicate extra risk, extra time to complete and extra cost are associated with its completion.
- The length of the X-10A Crossing adds risk, time and cost to that alignment relative to Crossing X-10B, and Crossing X-10A has no offsetting benefits.

The result is that Crossing X-10B is preferred. Because Plaza P-a is the only plaza associated with Crossing X-10B, Plaza P-a is preferred. More detail is provided in Section 2.2.5.3.

A new border crossing was first examined in detail in the Planning/Needs and Feasibility Study completed by the Border Transportation Partnership in 2004. That study identified several broad corridors for a new/expanded border crossing within the area shown in Figure 2-1. This section reviews the process that led to the determination of the preliminary Practical Alternatives and the Build Alternatives evaluated in the DEIS. That process was necessarily a collaboration among the United States, Canada, Ontario and Michigan. After both countries had assessed the range of alternatives from their perspective, the alternative analysis was subjected to a joint evaluation whereby each country...
took into account the other country’s assessment of impacts. The Partnership Steering Committee then determined the Practical Alternatives.

Federal, state and local agencies, and the public reviewed and commented on the DEIS. Public hearings were held on March 18 and 19, 2008. The comment period was open from February 29 to May 29, 2008.

2.1 Illustrative Alternatives

The collaborative evaluation involved establishing Illustrative Alternatives. Each crossing system alternative included connections to major highways on each side of the border, plazas in each country for federal inspections and toll collection, and a bridge or tunnel connecting the two countries. Fifty-one combinations of connectors, plazas and crossings were established to form the Illustrative Alternatives on the U.S. side of the border\(^1\) (Figure 2-2). Those alternatives included four proposed by the private sector:

1. The Detroit River Tunnel Partnership conversion of two rail tunnels beneath the Detroit River to truck-only use with one lane/tunnel for each direction of travel.
2. The Ambassador Bridge proposal to build a replacement span adjacent to the existing bridge.
4. The Don Flynn proposal in the Downriver area near Wyandotte.

Tunnels were investigated as an alternative to bridging the Detroit River. Based on the projected travel demand, six lanes of traffic were to be provided for. This could be done in two tunnels each carrying three traffic lanes, or three tunnels each carrying two lanes. The diameter of the three-lane tunnels would be greater, 50 feet versus 38 feet. The Illustrative Alternatives analysis considered: 1) boring through the bedrock; 2) trenching across the bedrock and sediments at the bottom of the Detroit River; and, 3) boring through the sediments at the bottom of the river. The analysis found:

- The bedrock contains groundwater under pressure that can suddenly burst into a bored tunnel. The presence of unsafe gases also makes a bored tunnel dangerous and very costly.

Figure 2-2
Preliminary End-to-End Illustrative Alternatives
Detroit River International Crossing Study

The white lines show the illustrative alternatives in the United States.
• Trenching along the bottom of the river is environmentally disruptive and would likely pose significant environmental impacts to the point that reviewing agencies may not allow it.
• The sediments at the bottom of the river are not thick enough to bore through. It is desirable to have as much sediment over the tunnel as the diameter of the tunnel. In some places there is not enough depth and the tunnel, which is lighter than both the weight of the surrounding earth and water above, can "float" upward, out of position. Weighting down the tunnel to prevent floating carries its own environmental impacts and can interfere with navigation on the river by decreasing the river's depth.

For these reasons, tunneling was not considered practical, and no tunnel options were carried forward into the DEIS.

The initial number of Illustrative Alternatives using a bridge as the crossing was reduced to 37 after accounting for unique circumstances, or “fatal flaws.” A fatal flaw is a condition that renders a course of action not practical. Those fatal flaws included an inability to tunnel under the Detroit River in the studied area as described above, or the blockage of alternative routes by such obstacles as highly-contaminated sites (e.g., Fighting Island).

A structured process was used on both sides of the border to evaluate from end-to-end the 37 remaining Illustrative Alternatives (Figure 2-3). This process involved the community in weighting the evaluation factors along with weights established by the MDOT and Canadian Technical Teams. The evaluation factors were:

• Protect Community/Neighborhood Characteristics including Environmental Justice (EJ) and Title VI Populations
• Maintain Consistency with Local Planning
• Protect Cultural Resources (including parkland)
• Protect the Natural Environment
• Improve Regional Mobility
• Maintain Air Quality
• Constructability

These factors and measures by which their performance is determined are illustrated in Table 2-1A.

The first part of the analysis concluded that the Illustrative Alternatives in the Downriver Area (Crossings X-1, X-2, X-3 and X-4 on Figures 2-2 and 2-4) were not candidates for further study. This is attributable to performance in the bottom half of all alternatives in five of the seven evaluation areas. This included poor performances in the areas of regional mobility, protecting the natural environment and protecting neighborhoods.
<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Impacts</td>
<td>Volume Change – Key Links</td>
<td>Vehicles</td>
<td>DRCC Travel Demand Model</td>
</tr>
<tr>
<td></td>
<td>Streets Closed (permanently)</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Streets Closed (temporarily)</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Streets Crossed</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Streets Rerouted</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Streets with Interchange</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Mainline Raillines Rerouted</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td>Noise</td>
<td>Frontline Exposure</td>
<td>Number of dwelling units exposed</td>
<td>Transportation Noise Model (TNM) Version 2.5</td>
</tr>
<tr>
<td>Community Cohesion/Character</td>
<td>Change from No Action</td>
<td>Positive/Negative/Neutral</td>
<td>Professional Judgment</td>
</tr>
<tr>
<td>Residential Units</td>
<td>Occupied</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Residential Population</td>
<td>Vacant</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Business Units</td>
<td>Active</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Estimated Employees in Affected Census Blocks</td>
<td>Vacant</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Other Land Uses Affected</td>
<td>Schools</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senior Service Facilities</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government Facilities</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Places of Worship</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Facilities</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State/Federal Government Facilities</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Community Services</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vacant Buildings</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Environmental Justice/Title VI</td>
<td>EJ Populations in Affected Census Block Groups</td>
<td>U.S. Census Data</td>
<td></td>
</tr>
<tr>
<td>Environmental Sites Affecting Plan Implementation (single sites may have multiple designations)</td>
<td>Leaking Underground Storage Tanks</td>
<td>Number</td>
<td>Web-based MDEQ files</td>
</tr>
<tr>
<td></td>
<td>EPA/DEQ Licensed Hazardous TSD Facility</td>
<td>Number</td>
<td>Web-based EPA files</td>
</tr>
<tr>
<td></td>
<td>National DEQ Priority List (Superfund)</td>
<td>Number</td>
<td>Web-based MDEQ/EPA files</td>
</tr>
<tr>
<td></td>
<td>RTK/Cerclis (Superfund)</td>
<td>Number</td>
<td>Web-based MDEQ/EPA files</td>
</tr>
<tr>
<td></td>
<td>Michigan Contaminated Site</td>
<td>Number</td>
<td>Web-based MDEQ files</td>
</tr>
<tr>
<td>Public Safety/Security (Plaza Only)</td>
<td>Proximity to Industry</td>
<td>Number of heavy industry businesses within 1/2 mile</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td>Public Safety/Security (Plaza Only)</td>
<td>Proximity to Residential/Retail</td>
<td>Number of residences within 500 ft/150m</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td>Public Safety/Security (Plaza Only)</td>
<td>Proximity to Hazardous Materials</td>
<td>Number of EPA Licensed Hazmat TSD Facilities within one-half mile</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Emergency Response</td>
<td>Distance to nearest fire station (mi)</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance to nearest police station (mi)</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of streets closed (perm.)</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of streets closed (temp.)</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Maintain Consistency with Local Planning</td>
<td>Consistency</td>
<td>Professional Judgment</td>
</tr>
<tr>
<td></td>
<td>Official Plans Consistency</td>
<td>YES/NO</td>
<td>Professional Judgment</td>
</tr>
<tr>
<td></td>
<td>Other Plans Consistency</td>
<td>YES/NO</td>
<td>Professional Judgment</td>
</tr>
</tbody>
</table>
Evaluation Factors and Performance Measures

Illustrative Alternatives Phase

Detroit River International Crossing Study

Evaluation Factor: Protect Cultural Resources

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Historic Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Districts</td>
<td>Number</td>
<td>Web-based SHPO files</td>
<td></td>
</tr>
<tr>
<td>Listed NRHP Sites/Structures</td>
<td>Number</td>
<td>Web-based SHPO files</td>
<td></td>
</tr>
<tr>
<td>Listed SHRS Sites/Structures</td>
<td>Number</td>
<td>Web-based SHPO files</td>
<td></td>
</tr>
<tr>
<td>Locally Listed Sites/Structures</td>
<td>Number</td>
<td>Local Historic Groups</td>
<td></td>
</tr>
<tr>
<td>Potentially Eligible Sites/Structures</td>
<td>Number</td>
<td>Field Review</td>
<td></td>
</tr>
<tr>
<td>Archaeology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previously Recorded Sites</td>
<td>Number</td>
<td>SHPO files</td>
<td></td>
</tr>
<tr>
<td>All Public Parks</td>
<td>Number/Acres</td>
<td>Municipal Web sites/Field Review</td>
<td></td>
</tr>
<tr>
<td>Parkland</td>
<td>Number</td>
<td>Web site – National Park Service</td>
<td></td>
</tr>
<tr>
<td>Coastal Zone Management Projects</td>
<td>Number of Project/Specify</td>
<td>MDEQ and Grant Applications</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Factor: Protect the Natural Environment

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowplain</td>
<td>Number/Acres</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Surface Run Off</td>
<td>Acres</td>
<td>Calculation</td>
<td></td>
</tr>
<tr>
<td>Primary Streams</td>
<td>Number/Specify</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Secondary Streams</td>
<td>Number/Specify</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Other Water-crossings</td>
<td>Number/Specify</td>
<td>GIS/Field Review</td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Wells</td>
<td>Number</td>
<td>Contact with Municipalities</td>
<td></td>
</tr>
<tr>
<td>Water In-takes</td>
<td>Number/Specify</td>
<td>Contact with Municipalities</td>
<td></td>
</tr>
<tr>
<td>Significant Habitat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>Acres</td>
<td>Field Review</td>
<td></td>
</tr>
<tr>
<td>Fens/Hogs</td>
<td>Number/Acres</td>
<td>Field Review</td>
<td></td>
</tr>
<tr>
<td>Endangered Species</td>
<td>Potential Species</td>
<td>U.S. Fish & Wildlife/MDEQ</td>
<td></td>
</tr>
<tr>
<td>Designated Wildlife Refuges</td>
<td>Number/Acres</td>
<td>U.S. Fish & Wildlife/MDEQ</td>
<td></td>
</tr>
<tr>
<td>Prime/Unique Farmland</td>
<td>Farmland</td>
<td>USDA, U.S. Department of Agriculture</td>
<td></td>
</tr>
<tr>
<td>Mineral Resources</td>
<td>Salt/Limestone</td>
<td>Field Review/Industry sources</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Factor: Improve Regional Mobility

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Network Effectiveness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMT (int’l traffic only, PM Peak Hour for 2035)</td>
<td> </td>
<td>SEMCOG Travel Demand Model</td>
<td></td>
</tr>
<tr>
<td>VHT (int’l traffic only, PM Peak Hour for 2035)</td>
<td> </td>
<td>SEMCOG Travel Demand Model</td>
<td></td>
</tr>
<tr>
<td>V/C (total traffic)</td>
<td> </td>
<td>Table 5-10, Figure 5-11</td>
<td></td>
</tr>
<tr>
<td>Diversion due to disruption at crossing</td>
<td> </td>
<td>SEMCOG Travel Demand Model</td>
<td></td>
</tr>
<tr>
<td>Detour of Local Arterials</td>
<td> </td>
<td>Number of SEMCOG Network Links Rerouted</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Factor: Maintain Air Quality

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Burden</td>
<td>Change from No Action</td>
<td>lbs. in PM peak hour</td>
<td>EPA MOBILE6-2 & model runs</td>
</tr>
<tr>
<td>CO</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>NOX</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>1,3 Butadiene</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>Acroleine</td>
<td> </td>
<td>EPA MOBILE6-2 & model runs</td>
<td></td>
</tr>
<tr>
<td>Hotspot</td>
<td>Carbon Monoxide (CO)</td>
<td>Parts Per Million</td>
<td>Approved Federal Model (CALQ3HC)</td>
</tr>
</tbody>
</table>

Table 2-1A (continued)

Table 2-1A (continued)

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect Cultural Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below Ground Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protect the Natural Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Habitat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prime/Unique Farmland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve Regional Mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain Air Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Factors and Performance Measures

Illustrative Alternatives Phase

Table 2-1A (continued)

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Maintenance</td>
<td>Streets closed during construction</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Adjacent businesses affected by construction</td>
<td>Number within 500 ft/150m</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Adjacent schools or public use facilities affected by construction</td>
<td>Number within 500 ft/150m</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td>Site constraints limiting access to the plaza for the river crossing or the roadway connections.</td>
<td>Plaza proximity to crossing landing</td>
<td>Distance (ft/m)</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Raillines adjacent to or through plaza site</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Utilities adjacent to or through plaza site</td>
<td>Number</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Presence of heavy industry adjacent to or on plaza site</td>
<td>Yes/No</td>
<td>GIS/Field Review</td>
</tr>
<tr>
<td></td>
<td>Contaminated sites/hazardous materials within 500 ft/150m (single sites may have multiple designations)</td>
<td>EPA Licensed Hazmat TSD Facilities</td>
<td>Web-based EPA files</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Priority List (Superfund)</td>
<td>Web-based MDEQ files</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTK Cerclis (Superfund)</td>
<td>Web-based MDEQ files</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michigan Contaminated Sites</td>
<td>Web-based MDEQ files</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEQ Licensed TSD Facilities</td>
<td>Web-based MDEQ files</td>
</tr>
<tr>
<td>Geotechnical constraints – identify any unusual geotechnical features/issues that may be problematic for construction</td>
<td>Proximity to solution mining areas</td>
<td>Number within 1,000 ft/300m</td>
<td>GIS</td>
</tr>
<tr>
<td></td>
<td>Presence of poor soil conditions (e.g., compressible/expansive and organic)</td>
<td>Yes/No</td>
<td>GIS/Literature Review</td>
</tr>
<tr>
<td></td>
<td>Presence of noxious gases (e.g., Hydrogen Sulfide and Methane)</td>
<td>Yes/No</td>
<td>Literature Review</td>
</tr>
<tr>
<td></td>
<td>Presence of artesian groundwater</td>
<td>Yes/No</td>
<td>Literature Review</td>
</tr>
<tr>
<td>Relative risk of known site conditions (environmental, geotechnical, other physical/construction methodologies)</td>
<td>Engineering Consideration</td>
<td>High/Medium/Low</td>
<td>Professional Judgment</td>
</tr>
</tbody>
</table>

Source: The Corradino Group of Michigan, Inc.
Figure 2-3
Alternatives Evaluation Process
Detroit River International Crossing Study

Source: Michigan Department of Transportation.
Figure 2-4
Area of Focus Based on Weighted Performance Analysis
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc.
Crossing X-15 in the Belle Isle Area never achieved performance ratings among the top five alternatives and was in the bottom half in five of seven evaluation categories. It too was eliminated early in the analysis of Illustrative Alternatives.

The proposal sponsored by a group known as Mich-Can, i.e., a crossing that lands in Delray, is substantially met by a number of the Practical Alternatives. The proposal offered by Mr. Don Flynn did not demonstrate engineering feasibility, and it was more like the downriver alternatives, which were eliminated early in the DRIC analysis of Illustrative Alternatives.

The private sector DRTP proposal\(^2\) was eliminated from further evaluation because it did not address the long-range mobility needs of the region. Specifically, based on analysis of international travel in the 2035 afternoon peak hour, the DRTP proposal (labeled “New Crossing” in Table 2-1B), when added to the Ambassador Bridge and the Detroit-Windsor tunnel, would reduce vehicle hours of travel throughout the U.S./Canada road network by only one percent (yellow cell). All other Illustrative Alternatives performed at three times the vehicle hours reduction of the DRTP proposal. Further, the DRTP proposal would do little in 2035 to reduce congestion on the Ambassador Bridge or the Detroit-Windsor Tunnel as defined by the Max V/C columns on Table 2-2. V/C is a measure of congestion defined as the ratio of the volume (numerator) on a roadway to its capacity (denominator).

<table>
<thead>
<tr>
<th>Evaluation Factor</th>
<th>Performance Measure Category</th>
<th>Description/Units</th>
<th>Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Regional Mobility</td>
<td>Highway Network Effectiveness</td>
<td>Vehicle Miles of Travel (international traffic only, PM Peak Hour for 2035)</td>
<td>No Action</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With New Crossing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Difference from 2035 – No Action</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Percent Difference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vehicle Hours of Travel (international traffic only, PM Peak Hour for 2035)</td>
<td>No Action</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With New Crossing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Difference from 2035 – No Action</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Percent Difference</td>
</tr>
<tr>
<td></td>
<td>Diversion due to disruption at Ambassador Bridge</td>
<td></td>
<td>Difference of Int'l VMT without Amb Br.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Difference of Int'l VHT without Amb Br.</td>
</tr>
</tbody>
</table>

Source: The Corradino Group of Michigan, Inc.

\(^2\) The DRTP Truck Tunnel proposal discussed here has been withdrawn by its proponents. See letter dated October 31, 2006, from Marge Byington, Director of Government Relations, Detroit River Tunnel Project, to MDOT Director, Kirt Steudle.
Table 2-2
International Traffic Volume and Maximum Volume-over-Capacity Ratios (V/C) for Key Regional Roadway Links
2035 PM Peak Hour Traffic
Detroit River International Crossing Study

<table>
<thead>
<tr>
<th>Crossing</th>
<th>No Build</th>
<th></th>
<th>DRTP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int'l Volume</td>
<td>Max V/C</td>
<td>Int'l Volume</td>
<td>Max V/C</td>
</tr>
<tr>
<td>New Crossing (DRTP)</td>
<td>N/A</td>
<td>N/A</td>
<td>601</td>
<td>0.78</td>
</tr>
<tr>
<td>Ambassador Bridge</td>
<td>3,694</td>
<td>1.12</td>
<td>3,311</td>
<td>1.10</td>
</tr>
<tr>
<td>Detroit River Tunnel</td>
<td>1,914</td>
<td>1.12</td>
<td>1,525</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Source: The Corradino Group of Michigan, Inc.

To measure the redundancy of the DRTP proposal, the travel model was applied with the Ambassador Bridge removed from the roadway network. If the Ambassador Bridge were closed for an extended period of time, the DRTP proposal would fail to effectively serve the diverted traffic. Specifically, closure of the Ambassador Bridge with the DRTP proposal in place would create more than 9,000 vehicle hours of additional travel in the 2035 peak hour as the regional network with the truck tunnel would not efficiently accommodate the diverted traffic (blue cell on Table 2-1B).

Another test of the Regional Mobility characteristics of the DRTP proposal is a combination of it with other “new” crossings either downriver or farther upstream. Referring to Figure 2-4, the tests were applied by combining the DRTP proposal with a new crossing at X-2 (Table 2-3A) or X-4 (Table 2-3B) or X-11 (Table 2-3C). The No Action crossings of the Ambassador Bridge, the Detroit-Windsor Tunnel and the Blue Water Bridge were included in all analyses.

Table 2-3A
Analysis of DRTP with Downriver Crossing X-2 + Ambassador Bridge + Detroit-Windsor Tunnel + Blue Water Bridge
2035 PM Peak Hour Traffic
Detroit River International Crossing Study

<table>
<thead>
<tr>
<th>New Crossing at X2/S3 and DRTP</th>
<th>New Crossings</th>
<th>Existing Crossings</th>
<th>Total All Crossing Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment A37<sup>a</sup></td>
<td>X2</td>
<td>DRTP</td>
<td>AMB</td>
</tr>
<tr>
<td>Plaza S3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.-Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td>453</td>
<td>0</td>
<td>1,670</td>
</tr>
<tr>
<td>Trucks</td>
<td>660</td>
<td>179</td>
<td>120</td>
</tr>
<tr>
<td>Canada-U.S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td>199</td>
<td>0</td>
<td>493</td>
</tr>
<tr>
<td>Trucks</td>
<td>277</td>
<td>55</td>
<td>152</td>
</tr>
<tr>
<td>Both Directions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td>652</td>
<td>0</td>
<td>2,163</td>
</tr>
<tr>
<td>Trucks</td>
<td>937</td>
<td>234</td>
<td>272</td>
</tr>
<tr>
<td>Total</td>
<td>1,589</td>
<td>234</td>
<td>2,435</td>
</tr>
</tbody>
</table>

^a Individual computer model assignments will vary slightly from one to another.

^b Alignment for X2/S3 via Eureka to I-275.

Source: The Corradino Group of Michigan, Inc.
Table 2-3B
Analysis of DRTP with Downriver Crossing X-4 + Ambassador Bridge + Detroit-Windsor Tunnel + Blue Water Bridge
2035 PM Peak Hour Traffic

Detroit River International Crossing Study

<table>
<thead>
<tr>
<th>New Crossing at X4/S5 and DRTP</th>
<th>New Crossings</th>
<th>Existing Crossings</th>
<th>Total All Crossing Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment A36 Plaza S5</td>
<td>X4</td>
<td>DRTP</td>
<td>AMB</td>
</tr>
<tr>
<td>U.S.-Canada</td>
<td>Cars</td>
<td>550</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trucks</td>
<td>636</td>
<td>190</td>
</tr>
<tr>
<td>Canada-U.S.</td>
<td>Cars</td>
<td>201</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trucks</td>
<td>253</td>
<td>56</td>
</tr>
<tr>
<td>Both Directions</td>
<td>Cars</td>
<td>751</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trucks</td>
<td>889</td>
<td>246</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Individual computer model assignments will vary slightly from one to another.

Source: The Corradino Group of Michigan, Inc.

Table 2-3C
Analysis of DRTP with Central Crossing X-11 + Ambassador Bridge + Detroit-Windsor Tunnel + Blue Water Bridge
2035 PM Peak Hour Traffic

Detroit River International Crossing Study

<table>
<thead>
<tr>
<th>New Crossing at X11/C4 and DRTP</th>
<th>New Crossings</th>
<th>Existing Crossings</th>
<th>Total All Crossing Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment A35 Plaza C4</td>
<td>X11</td>
<td>DRTP</td>
<td>AMB</td>
</tr>
<tr>
<td>U.S.-Canada</td>
<td>Cars</td>
<td>2,058</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trucks</td>
<td>862</td>
<td>65</td>
</tr>
<tr>
<td>Canada-U.S.</td>
<td>Cars</td>
<td>559</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trucks</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>Both Directions</td>
<td>Cars</td>
<td>2,617</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Trucks</td>
<td>1,262</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3,879</td>
</tr>
</tbody>
</table>

a Individual computer model assignments will vary slightly from one to another.

Source: The Corradino Group of Michigan, Inc.

Under these three scenarios, the DRTP proposal would carry less than 3.5 percent of all international traffic during the 2035 afternoon peak hour. This is another indication that the Regional Mobility needs of the DRIC Study will not be met by the Detroit River Tunnel Partnership proposal, alone or in combination with other proposals. Therefore, it was eliminated from further analysis.

The analysis then focused on the practical feasibility of the end-to-end alternatives of Crossings X-5 to X-9 (refer to Figure 2-4). Both the U.S. and Canadian analyses led to the elimination of these alternatives because of the impacts to the continued operation of the U.S. Steel plant. These alternatives were also affected by the inability to
construct the new Detroit River crossing in a timely manner (i.e., completion by 2013) because of the presence of known brine wells and the fact that many brine well locations remain unknown as records of solution mining were not kept for years.

The evaluation of Illustrative Alternatives work led to eliminating Crossings X-13 and X-14, which would use the Canadian Pacific rail right-of-way on both sides of the Detroit River. The impacts to neighborhoods, which included minority and low-income population groups’ plans for the future, cultural resources and air quality led to this conclusion.

The proposed replacement span of the Ambassador Bridge (X-12) was eliminated because, in Canada, the plaza and freeway connection leading to a replacement span would have unacceptable impacts. Specifically, expansion of the existing crossing and connections offers limited improvement to providing continuous/ongoing river crossing capacity, in comparison to providing a new crossing and connections. Expanding the existing plaza and constructing a new freeway in the Huron Church Road corridor has high potential for disrupting international traffic in this important trade corridor. With the Crossing X-12 alternative, the entire length of Huron Church Road up to the Ambassador Bridge would require reconstruction.

It was also recognized that expansion of the crossing and existing plaza would create high impacts to the historic Sandwich community. This alternative would have high community impacts in terms of displacements (300 residences and 80-plus businesses) and disruption (3,000 residences), plus additional impacts to built heritage features, and community character and cohesion. The community impacts associated with twinning the Ambassador Bridge, expansion of the existing bridge plaza to meet the requirements as defined by the Canadian Border Services Agency\(^3\) and expansion of Huron Church Road to a freeway are notably higher than those of the other Illustrative Alternatives.

Based on a larger number of community impacts, a higher degree of disruption to international traffic on Huron Church Road and the community during construction, and the limited improvement to continuous/ongoing capacity in the network, it was recommended that twinning of the Ambassador Bridge, expansion of the Canadian plaza and a new freeway connection to Highway 401 not be carried forward as a Practical Alternative.

Finally, though the replacement span of the Ambassador Bridge (X-12) ranked well in the United States’ Illustrative Alternatives ranking process, it was eventually dismissed.

by the Partnership as a Practical Alternative based upon further examination of its inability to satisfy the full complement of project needs (namely efficiency via freeway-to-freeway access and system availability through redundancy). Also considered by the United States in the dismissal of the replacement span as a Practical Alternative was the joint impact assessment conducted by the Partnership and summarized above. This collaboration is described in the FHWA “Evaluation of Studied Alternatives and Determination of Practical Alternatives” dated November 10, 2005, and included as Appendix C.

The Illustrative Alternatives analysis results defined an area upstream of Zug Island to the foot of the Ambassador Bridge in the U.S., and, in Canada, from Broadway Boulevard to the vicinity of Brock Street (Figure 2-5) as the places where further analyses would be conducted to develop the Practical Alternatives.

The transition from Illustrative Alternatives to Practical Alternatives is described next.

4 Concurrence by the Federal Highway Administration of the Illustrative Alternatives Analysis phases and results are included in Appendix C.
Figure 2-5
Area of Continued Analyses
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc.
2.2 Additional Screening of Alternatives

Once the Illustrative Alternatives phase was complete, and the Area of Continued Analysis defined, the Practical Alternatives were developed in several stages as depicted on Figure 2-3. Through a series of public workshops held from December 2005 to March 2006, a U.S. plaza zone was determined (Figure 2-6). Plaza layouts were developed within that area. Interchange concepts were then established to connect each plaza to I-75. Planning also addressed providing access around the plaza on its west side and a more direct rail connection into Zug Island.

Figures 2-7A through 2-7E depict the X-10 Crossing alternatives. Figures 2-8A through 2-8H depict the X-11 Crossing alternatives. The labeling system for the alternatives is shown in Table 2-4. Each of the 13 Preliminary Practical Alternatives, along with their potential impacts, were presented to the public in December 2006.5

The interchanges were then subject to Value Analysis and Value Planning from January 29 to February 2, 2007. The General Services Administration (GSA) (the property owner of the federal government) and U.S. Customs and Border Protection (CBP) (a bureau of the U.S. Department of Homeland Security) independently reviewed the plaza layouts (Figures 2-9A through 2-9D).

2.2.1 Impact Assessment

The evaluation of impact data for the preliminary Practical Alternatives indicated there was little difference among alternatives in terms of significant impacts, by type or number. The one exception was that utilities along the south edge of Plaza P-b (refer to Figure 2-9B) would take land from historic Fort Wayne, which is on the National Register of Historic Places. The Department of Transportation Act of 1966 states that if there is a reasonable and prudent alternative to taking this property then that avoidance alternative must be chosen. Because other alternatives avoid this impact, Plaza P-b, which is part of Alternatives #6, #8, #10 and #12, was not considered practical.

5 Refer to U.S. Public Meetings on Web site (www.partnershipborderstudy.com)
Figure 2-6
Area of Continued Analysis – Plaza Zone
Detroit River International Crossing Study

Source: The Coradino Group of Michigan, Inc.
Figure 2-7A
Crossing X-10 Preliminary Practical Alternative #1
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-7B
Crossing X-10 Preliminary Practical Alternative #2
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-7C
Crossing X-10 Preliminary Practical Alternative #3
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-7D
Crossing X-10 Preliminary Practical Alternative #4
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-7E
Crossing X-10 Preliminary Practical Alternative #5
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8A
Crossing X-11 Preliminary Practical Alternative #6
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8B
Crossing X-11 Preliminary Practical Alternative #7
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8C
Crossing X-11 Preliminary Practical Alternative #8
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8D
Crossing X-11 Preliminary Practical Alternative #9
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8E
Crossing X-11 Preliminary Practical Alternative #10
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8F
Crossing X-11 Preliminary Practical Alternative #11
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8G
Crossing X-11 Preliminary Practical Alternative #12
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-8H
Crossing X-11 Preliminary Practical Alternative #13
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-9A
Preliminary Alternative Plaza Layout P-a
Detroit River International Crossing Study

Source: The Coradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-9B
Preliminary Alternative Plaza Layout P-b
Detroit River International Crossing Study

Note: The western half of this plaza would intrude more than 150 feet into Fort Wayne.

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-9C
Preliminary Alternative Plaza Layout P-c
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
Figure 2-9D
Preliminary Alternative Plaza Layout P-d
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
The most directly affected community, Delray, spoke out at the Local Advisory Council and public meetings in March 2006. These comments stressed that the interchanges of Alternatives #4, #12 and #13 were unacceptable because they would “isolate” the most viable residential area remaining in Delray. These alternatives would also affect the block-long Detroit Union Produce Terminal, which is potentially eligible for listing on the National Register of Historic Places. Because there are other reasonable options, Alternatives #4, #12 and #13 were not considered practical.

2.2.2 Value Analysis (VA)/Value Planning (VP) Results

Further screening of alternatives took place through the weeklong Value Analysis/Value Planning workshop. This process focused on the proposed interchanges connecting the plaza to I-75 in the U.S. These interchanges were examined in terms of performance (access, operations, geometry), acceptance (relationship to the community, utilities, constructability), and cost. The result was elimination of Interchanges D and F, which confirmed views of the affected community that Alternatives #4, #12 and #13 would isolate Delray. Concept G was developed during Value Planning to minimize property acquisition impacts on the community. It became Alternative #14 (Figure 2-10). Interchange Concept H/Alternative #15 was also developed (Figure 2-10A). Further evaluation indicated the “braided ramps” of this concept were not buildable because there wasn’t enough space at this location. So, it was dropped.

2.2.3 Plaza Analysis

2.2.3.1 Operation

Cars and commercial vehicles would be separated from each other as they enter the plaza from I-75. Once on the plaza, vehicles would line up in one of the lanes provided to pay a toll – cars to the left and commercial vehicles to the right. After paying tolls, vehicles would go directly to Canada or stop at the duty-free area, where certain limited quantities of goods could be purchased without paying the federal excise tax.

Allowance has been made in plaza layout for outbound inspection of selected trucks prior to crossing the border. U.S. Customs and Border Protection (CBP) inspections are generally associated with the act of entering the country.
Figure 2-10
Alternative #14 - Interchange Concept G Developed Through Value Planning
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group

Figure 2-10A
Alternative #15 – Interchange Concept H Developed Through Value Planning
Detroit River International Crossing Study

Source: The Corradino Group of Michigan, Inc. and Parsons Transportation Group
However, the CBP is also authorized to inspect people and cargo as they leave the country (this practice is called outbound inspection). Historically, the practice of outbound inspections has been infrequent, and generally associated with the suspicion of specific illegal activity. In recent years there have been a number of discussions regarding increasing the frequency of outbound inspections. If there are issues, the vehicle may be returned to the U.S.

Passenger vehicles traveling in the opposite direction (i.e., entering the U.S. from Canada) would be guided to the left of the plaza where they approach Primary Inspection booths. Agents would review passports (or other legally-recognized documents) and goods brought into the country. These agents would also conduct other inspections deemed necessary. All these functions are called Primary Inspection.

All trucks are now required to provide paperwork electronically to U.S. Customs and Border Protection 45 minutes in advance of arrival at the border. All trucks must first go through Primary Inspection. If the paperwork is in order, they may be allowed to proceed to I-75.

Cars and trucks could be required to go to Secondary Inspection during which truck drivers turn off their engines. Trucks may be weighed, unloaded, sent through the Gamma Ray Inspection Technology (GRIT) building, inspected for hazardous material, or sent to the Animal and Plant Health Inspection Service (APHIS) facility. APHIS is part of the U.S. Department of Agriculture. At any point, a commercial vehicle can be denied entry to the U.S. and securely returned to Canada.

FAST and NEXUS programs provide expedited crossing of the border for those who qualify. The proposed DRIC alternatives would facilitate use of these programs by providing uncongested access to the special booths that process such vehicles. Access to the special booths is often blocked at the Detroit-Windsor Tunnel and Ambassador Bridge by general traffic waiting to clear Customs inspection. Therefore, FAST and NEXUS use is not as widespread as was hoped when the programs were established.

2.2.3.2 GSA/CBP Analysis of Plazas

In February and March 2007, the General Services Administration and U.S. Customs and Border Protection independently analyzed each of the four DRIC plaza layouts (refer to Figures 2-9A through 2-9D). Plaza P-b (Figure 2-9B) was eliminated because it would straddle an existing rail line in Delray. Trains cannot be allowed to run through, over or under the plaza due to the security threat of such operations. The rail line cannot be abandoned (permanently closed), as the railroads refuse to give up this asset, even if no traffic uses it. Plaza P-b also had circuitous traffic flow patterns and
limited flexibility and expandability. Plaza P-b, attached to Alternatives #6, #8, #10 and #12, was eliminated from further consideration.

Plaza P-d (refer to Figure 2-9D) was eliminated because it was connected to I-75 with the “split” interchange (Interchange F) to which the Delray community objected and which was proposed for elimination in Value Analysis/Value Planning. The GSA/CBP analysis reinforced the need to eliminate this plaza because of:

- The large separation between inbound and outbound vehicle inspection functions;
- The plaza’s secondary commercial inspection area’s proximity to Southwestern High School; and,
- The plaza’s limited flexibility.

Alternative #13, which included Plaza P-d, was therefore eliminated from further consideration.

2.2.4 Practical Alternatives

2.2.4.1 No Build Alternative

The No Build Alternative is a Practical Alternative. It does not include a new crossing built by government. It does consider the proposal by the private-sector owners of the Ambassador Bridge to build a six-lane span to replace the existing, four-lane bridge as a variation of the No Build Alternative.

2.2.4.2 Build Alternatives

As discussed in Sections 2.2 through 2.2.3.2, Alternatives #4, #6, #8, #10, #12, #13, and #15 were eliminated based on input from the public, the impact assessment (Section 2.2.1), the Value Analysis/Value Planning Study (Section 2.2.2), and analysis of GSA and CBP (Section 2.2.3.2). This information was reviewed and accepted by the Border Partnership. It was also reviewed with the public in June 2007. Another alternative was then added with approval of the Border Partnership – i.e., #16. It was developed in response to public input received at the June public meetings to provide better local community connectivity to the areas north and south of I-75. It is very similar to Alternatives #1, #2, #3, #5 and #14 in that it includes Crossing X-10 and Plaza P-a. It would also have a trumpet-type interchange in the vicinity of Livernois Avenue and Dragoon Street. It would retain full access to I-75 at Springwells Street and full, but indirect access to I-75 at Clark Street.
Nine Practical Alternatives in the U.S. were analyzed as Build Alternatives in the DEIS. These are listed on Table 2-5 and shown in Figures 2-11A through 2-11F for the set of X-10 alternatives and Figures 2-12A through 2-12C for the set of X-11 alternatives. The No Build Alternative is also included in the DEIS as a Practical Alternative.

2.2.5 What Rules Guide Project Engineering?

The criteria that guide the layout/engineering of the border-crossing system are based on information provided by the Federal Highway Administration, Michigan Department of Transportation, U.S. Customs and Border Protection, and the General Services Administration (and other agencies that would occupy the plaza, such as the U.S. Department of Agriculture). The Conceptual Engineering Technical Report\(^6\) provides details on these criteria. Summaries follow in Section 2.2.5.1.

2.2.5.1 Roadway-Engineering Criteria

The DRIC Practical Alternatives meet or exceed the desirable roadway-engineering criteria, covering such issues as:

- Horizontal and vertical clearances
- Horizontal and vertical curves
- Sight distance
- Superelevation
- Grades
- Lane and shoulder widths
- Acceleration and deceleration lane lengths

Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchange
- Parts of lost interchange access will be replaced with new ramps in new location

Crossings
- Includes X-10A and X-10B

Streets Crossing I-75
- Three of seven removed
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Four of five removed
Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will be replaced with new ramps in new location

Crossings
- Includes X-10A and X-10B

Streets Crossing I-75
- Two of seven removed
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Four of five removed
Characteristics

I-75
- The mainline of I-75 would be shifted south

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will be replaced with new ramps in new location

Crossings
- Includes X-10A and X-10B

Streets Crossing I-75
- Three of seven removed, including Livernois and Dragoon
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Three of five removed
Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will be replaced with new ramps in new location

Crossings
- Includes X-10A and X-10B

Streets Crossing I-75
- Three of seven removed, including Livernois and Dragoon
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Three of five removed
Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will not be replaced

Crossings
- Includes X-10A and X-10B

Streets Crossing I-75
- Two of seven removed; Livernois and Dragoon
- Only build alternative that keeps Junction open
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Two of five removed
Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes part of Clark interchange
- Closed ramps will be replaced with new ramps in new location

Crossings
- Includes X-10A and X-10B

Streets Crossing I-75
- Two of seven removed
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Four of five removed
Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will be replaced with new ramps in new location

Crossing
- X-11 only

Streets Crossing I-75
- Three of seven removed
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Four of five removed
Characteristics

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will be replaced with new ramps in new location

Crossing
- X-11 only

Streets Crossing I-75
- Two of seven removed
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Four of five removed
Characteristics

I-75
- The mainline of I-75 would be shifted south

Interchanges
- Eliminates Livernois-Dragoon interchange
- Closes parts of Clark and Springwells interchanges
- Closed ramps will be replaced with new ramps in new location

Crossing
- X-11 only

Streets Crossing I-75
- Three of seven removed, including Livernois and Dragoon
- Green Street becomes a local access boulevard

Pedestrian/Bicycle Crossings of I-75
- Three of five removed
Horizontal clearance means the distance between the drivers’ lane and an obstruction. The greater the clearance, the greater the safe operation of vehicles.

Vertical clearance means the distance from the road surface to the lowest point of a bridge overhead. Vertical clearance allows for large, special vehicles.

Curves in the roadway, both horizontal and vertical, cannot be too sharp or steep. They are set based on how fast vehicles are allowed to drive. Curves too sharp contribute to safety issues. Roads too steep create issues during inclement weather for all vehicles and for trucks at all times.

Sight distance criteria address the driver’s need to see over hills and around curves. They must be able to see other vehicles at intersections and on ramps.

Superelevation is the slant of a road around a curve. This allows safe and comfortable travel. It also allows water to flow off the road.

Grade refers to the slope of a roadway. A five percent grade means that the road rises or falls five feet for every 100 feet of length. Roads cannot be too steep because vehicles, especially heavy trucks, would slow to a point at which they would interfere with other traffic or lose traction in rain or snow conditions.

Lane widths are how wide the travel lane is built. Higher-speed roads have wider lanes to provide a greater safety margin in the case of driver error.

Shoulders are the areas off the travel lanes where vehicles can stop. They provide an area of refuge in emergencies.

Acceleration and deceleration lanes allow a vehicle to get up to speed before merging or to safely stop before the end of a ramp.

2.2.5.2 Bridge Engineering Criteria

The DRIC project includes typical highway bridges plus the long-span bridge over the Detroit River. The highway bridges would cross existing railroad tracks, local roads, Fort Street (M-85), and I-75.
Bridge Types Considered for Detroit River Crossing

The bridge types considered for the crossing of the Detroit River are explained in detail in the Bridge-Type Section of the Conceptual Engineering Technical Report. Either bridge type will be a six-lane structure with three lanes and shoulders in each direction (Figure 2-13).

For the main structure crossing the river, the design codes of both U.S. and Canada apply. The main structure will be developed using the International System of Units (SI) (metric).

* Dimensions are in metrics.

* Dimensions are in English.

Source: Parsons Transportation Group
The Detroit River varies in width from 1,900 to 2,600 feet in the vicinity of Corridors X-10 and X-11. It is a major commercial shipping channel with many shoreline industries in the project area receiving materials delivered by ship. Discussions with the U.S. and Canadian Coast Guards and organizations representing ship owners and captains led to the conclusion that none of the Practical Alternatives can include piers (bridge supports) in the Detroit River. Piers would interfere with safe navigation. All supports for the bridge will be on land.

Span lengths would range between 2,820 and 4,260 feet. This range is because the proposed DRIC bridges do not go straight across the narrowest part of the river. Only two bridge types are candidates for a crossing of this length: suspension and cable-stay (Figure 2-14). Suspension bridges can be used in either corridor. Cable-stay bridges have a practical span limit of about 3,300 feet, so they are only considered at the X-10B and X-11 Crossings.

A typical suspension bridge is a continuous girder with one or more towers erected above the piers. Large anchors, or counterweights, are placed to hold the ends of the cables at both ends of the bridge. The main cables are stretched from one anchor over the tops of the tower(s) and attached to the opposite anchor. The cables pass over a special structure, known as a saddle, that is part of the tower. The saddle allows the main cables to slide, transferring the load from the cables to the tower. Long-span suspension bridges are engineered to ensure that they do not vibrate or sway excessively under heavy loads.
Final Bridge Options

<table>
<thead>
<tr>
<th>Crossing Location: X-10A</th>
<th>Main Span Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing Location: X-10B</th>
<th>Main Span Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing Location: X-11C</th>
<th>Main Span Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing Location: X-11C</th>
<th>Main Span Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,460</td>
</tr>
</tbody>
</table>

* See the Engineering Report, Appendix B: Bridge Plans (Parsons, November 2008)

Source: Parsons Transportation Group
Vertical cables, called Hanger Cables, hang from the main cables to support the girder. The majority of the weight of the bridge, and vehicles on it, is supported by the hanger cables which, in turn, are supported by the main cable.

A typical cable-stay bridge has a continuous girder with one or more towers erected on foundations. Cables stretch diagonally from these towers and support the girder. Individual cables connect from the bridge deck, through the tower and back to the bridge deck. The towers of a cable-stay bridge are substantially taller than the equivalent suspension bridge. Long-span cable-stay bridges are also engineered to ensure stability in the wind. The relative difference in tower heights between suspension and cable-stay bridge types for spans in this area of the Detroit River vary from approximately 260 feet to 360 feet.

The bridge height over the Detroit River varies by alternative. Each concept meets vertical clearance criteria of the U.S. Coast Guard (minimum vertical clearance at the shorelines of 133 feet and 152 feet for 100 feet at the center of the navigation channel).

The proposed bridges have been checked against the flight clearance needs of the Detroit Metropolitan Wayne County Airport, the Windsor Airport, the Coleman Young Airport and Grosse Ile Municipal Airport. The bridge tower heights of all candidate bridges can be designed to fall below the regulated flight paths of these airports.

All structure types under consideration would be engineered to mitigate safety and security risks. There are presently no safety or security issues, either natural or manmade, that differentiate between the bridge types being considered on each alignment.

The two bridge-type options at Crossings X-10B and X-11 will be retained through the environmental impact assessment stage of the project. Only a suspension bridge will be considered at Crossing X-10A. While a choice will be made among Crossings X-10A, X-10B and X-11 in the FEIS, a choice of bridge type will be made by the Partnership in the design phase of the project.
Crossing X-10(A) was developed in the DRIC Bridge Type Study to avoid the area near a known sinkhole that developed from historical brine mining in Canada. The Bridge Type Study demonstrated that Crossing X-10(A) is not optimal from a bridge engineering perspective. Therefore, advancing conceptual engineering and geotechnical work of bridge options at Crossing X-10(A) was postponed until results were obtained from the Brine Well Cavity Investigation Program. Recommendations from the geotechnical investigation, reached on February 13, 2008, indicate Crossings X-10B and X-11 are cleared to accept a new bridge.

2.2.5.3 Plaza Facilities/Security Engineering Criteria

The U.S. General Services Administration (GSA) has developed basic engineering guidelines for plaza facilities and their safety and security needs (The Land Port of Entry Design Guide). The U.S. Department of Homeland Security, Customs and Border Protection Agency (CBP); U.S. Department of Agriculture, Animal and Plant Health Inspection Service – Veterinary Services (USDA APHIS-VS); and, the Food and Drug Administration (FDA), in cooperation with GSA, developed a specific Program of Requirements (POR) for the DRIC Study that includes:

- A minimum of 80 acres of building, inspection and circulation space for the Federal Inspection Station;
- Approximately 58,000 square feet of inspection office buildings and 25,000 square feet of docks to inspect and unload cargo;
- 20 inspection booths for cars and trucks (additional space has been included for expansion to 40 booths);
- Space for two non-intrusive inspections buildings and one mobile non-intrusive inspection operations facility;
- Provision for inspection of outbound vehicles in the Inbound Secondary Inspection area;
- Space for a future self-contained Outbound Inspection area;
- Space for impounding vehicles, inspecting trucks, and for hazardous materials containment;
- A 5,000-square-foot facility for the observation, inspection and unloading of animals;
- Space for Radiation Detection Portal monitors and License Plate Readers; and,
- Space for future large kennel for the care of dogs used in security/inspection activities.

Besides the core area established for CBP of 80 acres and related functions (another 10 acres), an additional 20 to 25 acres is needed. This latter space would accommodate the Duty Free and Toll Collection area and provide for brokers and
general circulation. Another 40 to 45 acres would be provided for a utility corridor and buffer for expansion. This places the plaza in the range of 150 to 160 acres.

2.3 Identification of the Preferred Alternative

The decision-making process that led to identifying the Preferred Alternative was part of a U.S.-Canadian collaboration to make all decisions on an end-to-end basis. The process reported upon here addresses the alternative by crossing component – bridge, plaza and interchange/Canadian access road.

The result is that Crossing X-10B is preferred. Because Plaza P-a is the only plaza associated with Crossing X-10B, Plaza P-a is preferred.

First, data on the crossing on each side of the border were examined to determine if the characteristics of the three bridges – X-10A, X-10B or X-11 – would significantly advantage/disadvantage one alternative or another. This was an important first step because of the uniqueness of the connection of the U.S. and Canadian plazas to the proposed crossings. For example, in the U.S., Plaza P-a would only connect to the X-10 Crossings, while Plaza P-c would only connect to the X-11 Crossing. In Canada, Plaza C would only connect to Crossing X-11. In examining the crossing evaluation data, it is noted the only significant differences are in the areas of regional mobility, constructability, and potential relocations. The results are:

- The X-10 Crossings are forecast to carry, in 2035, 15 to 50 percent more traffic than the X-11 Crossing.
- The X-10 Crossings are forecast to carry, in 2035, approximately 50 to 60 percent of the combined traffic carried by the proposed new crossing and the Ambassador Bridge; the X-11 Crossing, between 40 and 43 percent of the combined traffic.
 - This measure indicates the relief to be provided to the regional network, particularly Huron Church Road.
- The brine well investigation indicates that:
 - All bridge foundations on both sides of the river are cleared from risk.
 - But, along the Canadian approach to Crossing X-11:
 ✓ Additional investigation is needed to clear the crossing from risk.
 ✓ Even if those investigations are undertaken, the resulting data may still indicate the risk may not be acceptable.
 ✓ The extra time to assess the risk and build the facility would be at least one year compared to the X-10B crossing.
If proved feasible, the extra cost associated with building the X-11 approach structure in Canada would be as much as $CAD260 million (w/inflation) compared to the X-10A Crossing.

- The number of potential relocations of active residential properties associated with the X-10 Crossings (0) are lower than the X-11 Crossing (21).
- The number of potential relocations of active businesses associated with the X-10 Crossings (0) are lower than the X-11 Crossing (5).

Based on these findings it can be determined that:

- Crossing X-11 is not considered the best candidate for being the Preferred Alternative.
 - Plaza P-c in the U.S., attached to Crossing X-11, therefore, is also not a candidate for being the Preferred Alternative.

A comparison of the two X-10 Crossings results in the following findings:

- The estimated construction cost of the main span of the suspension bridge at Crossing X-10A is significantly greater than the bridges at Crossing X-10B.
- The duration of 62 months to construct the main span of Crossing X-10A is over one year more than Crossing X-10B.

Therefore, Crossing X-10B was considered the best candidate for being the Preferred Alternative. And, the removal of the X-11 and X-10A crossings from further consideration left Alternatives #1, #2, #3, #5, #14, and #16.

In summary, the Preferred Alternative is the system associated with Crossing X-10B, because:

- With Crossing X-11, brine well issues on the Canadian side of the border indicate extra risk, extra time to complete and extra cost are associated with its completion (Section 3.16 of the FEIS).
- The length of the X-10A Crossing adds risk, time and cost to that alignment relative to Crossing X-10B, and Crossing X-10A has no offsetting benefits.

The result is that Crossing X-10B is preferred. Because Plaza P-a is the only plaza associated with Crossing X-10B, Plaza P-a is preferred.

The roadway criteria covered in Section 2.2.5.1 and the bridge criteria covered in Section 2.2.5.2 have not changed. Further consultation with the General Services
Administration has provided additional guidance with respect to plaza development (See Figure S-12 and Section 2.2.5.3). Specifically, GSA’s plaza requirements now consist of:

- A minimum of 80 acres of building, inspection and circulation space for the Federal Inspection Station, including:
 - Approximately 50,000 square feet of inspection office buildings and 60,000 square feet of docks to inspect and unload cargo;
 - 20 inspection booths for cars and trucks (with additional space for flexibility); space for two non-intrusive inspection buildings and two mobile non-intrusive inspection storage buildings;
 - 5 commercial secondary exit control booths;
 - 4 inspection booths for Canada bound cars and trucks;
 - Provision for inspection of outbound vehicles in the Inbound Secondary Inspection area;
 - Space for a future self-contained Outbound Inspection area;
 - Space for impounding vehicles, inspecting trucks, and for hazardous materials containment;
 - An approximately 13,500 square-foot facility for the observation, inspection and unloading of animals; and
 - Space for Radiation Detection Portal monitors and License Plate Readers.

In addition, other plaza needs can be defined to include:

- 10 toll booths;
- 10,000 square-foot administration building for bridge operations and tolls;
- 30,000 square-foot maintenance facility;
- 15,000 square-foot Duty Free Building with 138 parking spaces;
- 10,000 square-foot Brokers Building;
- Space for the Michigan State Police, Motor Carrier Division; and
- An area for stormwater retention basin.

Practical Alternatives #3 and #5, associated with Crossing X-10B, would displace historic structures that other alternatives avoided. The law requires that if a protected historic property can be avoided, it must be. So, Alternatives #3 and #5 were not candidates for the Preferred Alternative. Alternative #14, also associated with Crossing X-10B, had no access across I-75 between Waterman and Clark Streets (other alternatives did), had poor access to/from I-75, and had a lower design speed than other alternatives. Therefore, it was not a candidate for the Preferred Alternative. Alternatives #1, #2, and #16 were considered further.
Based on a detailed analysis of these remaining alternatives, the Preferred Interchange was developed (Figure 2-15) combining the best elements of each. The Preferred Alternative will replace five existing pedestrian crossings of I-75; four vehicular crossings of I-75, compared to seven today; and, complete interchange access at Springwells Avenue and a “split” interchange at Clark Street; the ramps on the north side of Clark will remain where they are, but the ramps on the south side of Clark will shift south several blocks. None of the Practical Alternatives had all these features.

Refined engineering allows the Preferred Alternative depicted in Figure 2-15 to provide that:

- The I-75 northbound service drive will terminate at Campbell Street in order to avoid Berwalt Manor, a National Register-eligible apartment building. This design affects the northbound I-75 exit ramp in the vicinity of Dragoon Street which will exit to Campbell Street. The northbound service drive will begin again north of Campbell Street and continue to Grand Boulevard.
- Campbell Street will be improved to a narrow boulevard section from the railroad line that defines the north Plaza P-a perimeter south to Jefferson Avenue.
- Local intersections along Jefferson Avenue will be improved including Dearborn, Westend, and Clark Streets to better accommodate truck turning movements.
- Pedestrian bridges across I-75 will be located at Solvay, Beard, Waterman, Morrell and McKinstry Streets.
- A plaza/bridge maintenance facility and stormwater retention areas will be part of Plaza P-a.
In Canada, Crossing X-10B and Plaza B1 are in an area that is largely industrial. It is clearly the preferred. Nonetheless, this crossing and plaza will have a relatively moderate impact, compared to all other Practical Alternatives, on the extent of terrestrial and aquatic communities impacted, including provincially-rare vegetation communities and the number of specifications/categories of species at risk that could be affected. The Windsor Parkway provides significant advantages over the other alternatives. It provides a mix of depressed (below grade) freeway and tunnel sections over a six-mile length to Highway 401. The 11 tunnels would total just over a mile in length (Figure 2-16). Two-way service roads would be located adjacent to, but separate from, the freeway. This access road will:

- Provide a greater buffer between neighborhoods and the roadway than other options.
- Create 240 acres of new green space, meaning a greater number of opportunities for new parks and recreation trails to link to existing parks and trails.
- Have better access between the freeway and its service roads.

Figure 2-16
Image of a Tunnel on the Windsor Essex Parkway
Detroit River International Crossing Study

Source: URS Canada